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Introduction and statement of the Main Theorem. In this paper, we
intend to examine a property of the Laplacian zl of generalized Neumann
or Dirichlet types ([2]) acting on the space of square-integrable forms on
certain inco.mplete Riemannian manifolds called cuspidally stratified
Riemannian spaces (briefly, CSR-spaces).

Main Theorem. The heat operator e- on a real n-dimensional CSR-
space is of trace class and there exists a constant KO such that

Tr e-Kt-n/, 0< t< to.
The author’s study of CSR-spaces was motivated by the desire to prove

a similar result for the smooth part

_
of a projective variety X (with the

induced Fubini-Study metric, which is therefore incomplete). However
such spaces do not fall into the category of CSR-spaces studied in this
paper. In fact, even on a normal singular projective surface, the metric
near the singular point is more complicated ([3]). Nevertheless the author
believes that it will not be too difficult to extend the theory of CSR-spaces
to projective varieties and that this will provide a suitable ramework for
studying the global analysis o singular projective varieties.

1. Definition of CSRospaces. Let X be a real n-dimensional com-
pact stratified space (possibly with boundary) with Thorn structure {if,
([4]). Here 3 is the stratification o X (that is, a decomposition of X into
smooth manifolds without boundaries) and is a collection of open tubular
neighborhoods of the strata (i.e., the elements of q), where each open
tubular neighborhood T. (V e ) is endowed with the following three
objects" the structure of a fibre bundle, ’T-V, a so-called distance
unction rom V, 2 T--[0, c), and a homeomorphism h rom the map-
ping cylinder M(z, al(1)) to Tv. Note that (Tv, z,, 2, hv), V e S, are com-
patible with each other in a natural sense.

Now let 27 be the (disjoint) union of the strata with positive codimen-
sions and setL)--X--2. This manifold together with the metric g described
below is called a CSR-space.

For each stratum V e S with dim Vn, let kv be a real number with
=0 if dim V=n--1 and kv=l if dim Vn-1; set k={k" V e q, dim
Then the metric g depends on k and is characterized near the strata with
positive codimensions as follows"
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For any V e with dim Vn and x e V, set _?,=(x)fq_ and
=,2(1)fq.,x. Then we can identify , with (0, oo),x by the
homeomorphism h,. Hence the intersection of St and a (particular)
neighborhood o x in X can be canonically identified (using the struc-
ture of T,) with

(1.1) U (0, 1) ,x,
where U is a neighborhood of x in V. Now fix a metric on V and
let be its restriction to U. Let dr(R)dr be the standard metric on the
interval (0, 1) and 0, be the restriction of the given metric g to S,.
Then, on the manifold (1.1), the given metric g is quasi-isvmetric (by
the identity map) to the metric

(1.2) (ll + dr(R)dr+
Recall that the diffeomorphism f" (_, g)--(-_, g) is called a quasi-
isometry i there exists a constant C0 such that C-g<=f*g<=Cg there-
fore, if the are compact, then the diffeomcrphism f is always quasi-
isometric. Hence the above characterization is very rough. In fact, for
example, the metric g does not even have to be divided into the orm (1.2).

2. Idea of the proof of the Main Theorem. The proof closely fol-
lows the program given by J. Cheeger ([1], which, in the notation above,
has only treated (2., g) with k--(k--l" V e S, dim V<n--1}). We have
only to prove the following" let (Y, #) be an m-dimensional Riemannian
manifold which has the property mentioned in Main Theorem (briefly, has
the property (MT)) and set
(2.1) C<,(Y)--"the space (0, R) Y with the metric dr(R)dr+ p(r) g

where p(r)--r for a number k>__l; then this metric cusp has the property
(MT).

Now start by finding the system o fundamental solutions o the dif-
erential equation lt=t, 0, by using the method of the separation of
variables (in the r- and Y- directions; in the Y-direction tle inductive
assumption requires the pgssibility of the series expansions of square-
integrable orms in terms of eigenorms). Then the spectrum of the o1-
lowing singular boundary value problem on the interval (0, R] turns out to
be the non-trivial part of the spectrum of the Laplacian on (2.1). (The
remaining part, the trivial part, cymes from the zero, maximal and mini-
mal pvins of the Neumann and Bessel functions.)

H"(r)/{,i--q(r)}H(r)-O, Or<_R,

.1-i H(r)2dr c

(2.2) d -/2H)(R) 0 (or(p-/2H)(R) 0),-dr(P
q,(r)=/r_l+ k(/ r_2 (>0).

4
Here belongs to the positive spectrum of the Laplacian on Y
(//+-(-(i----k-)-/-2-1 if k=l), which is discrete, and the constant is deter-
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mined by the dimension m o Y and the degree o forms we are consider-
ing. The general expansion theorem ([6]) says that the spectrum o the
problem (2.2)consists of increasing eigenvalues, (q,(R))21(/)22(/).

’ c, and the proper comparison theorem implies the existence o a constant
K0 which is independent o/0, such that
(2.3) e -(z)t Kt-i/2e -qz(R)t, O< t to.

j=l

Hence, by using the property (MT) of Y, we get
Lemma. There exists a constant K>0 such that

(2.4) , e-(")t<Kt-(+)/2, 0<tto.
,u>O j=l

This essentially proves that the metric cusp (2.1) has the property
(MT).
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