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The Kac-Moody groups associated with a given Kac-Moody algebra as
constructed by Peterson-Kac [5] have a disadvantage that the exponential
map can not be defined on the whole algebra. The present note gives a
partial solution to the problem to remedy the situation, by constructing
groups in the. above title.

1. Kac.Moody algebras. Let be a Kac-Moody algebra and A the
corresponding generalized Cartan matrix (GCM). Let be the Cartan sub-
algebra of g, A the root system of (g, I)),// the set o simple roots, A/ the
set of positive roots with respect to H, and W the Weyl group. We denote
by the Kac-Moody algebra over the real number field R corresponding
to the GCM A, and by the Cartan subalgebra of . Then, g=C(R)g and
=C(. There exists an involutive antilinear automorphism w0 on g such
that
(1.1) Oo(h)=--h (h R), Wo(g")=g (or e zl),
where g" is the a-root space (cf. [3, Chap. 2]). We denote by and the
set of fixed points ot 0 in g and respectively. Then, = g. Since

0 is an involution, is a real form o g as a Lie algebra. We call the
unitary form of g and R a compact type subalgebra of g. If g is finite-
dimensional, then g is semisimple, is a compact real form o g, and is a
maximal compact subalgebra of

We assume throughout that the GCM A is symmetrizable (cf. [3]).
Then, there exists a symmetric bilinear torm (. ].) on g, a standard in-
variant form, which is infinitesimally invariant under ad g. The restriction
of (- [.) to is W-invariant and non-degenerate, and defines a W-equivariant
linear bijection, from onto its dual *. We denote by the same symbol
(. ].) the induced bilinear torm on *. Then we have
(1.2) [x, y]--(x y)-l() (x

We define a sesquilinear form (. [.)0 on g as
(1.3) (x y)0-- -(X Wo(y)) (x, y e ).
Then, according to [4, Theorem 1], (. ]’)0 is Hermitian and its restriction
to each root space g" is positive definite.

Put =.e/ g*". Then, they are both subalgebras of g, and we have
a triangular decomposition g= _(R)I(R)/ (direct sum).

2. Irreducible highest weight modules. Let 2 e )* and L be the
left ideal of the enveloping algebra U(g) generated by n+ and {h--2(h) lh e }.
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Then, the left g-module M()=U(g)/L is the Verma module for g with
highest weight 2. We denote by L(2) the unique irreducible quotient of M().

Let P be the projection rom U(g) onto U(i)) along the decomposition
U(g) U()(R)(U(g)a/ + a_ U(g)). Denote by (. } the sescluilinear form on
U(g) defined by
(2.1) (x y}--P(y*x)() (x, y e U(g)),
where we identify U() with the polynomial ring C[*] on *, and y--y* is
the unique antilinear antiautomorphism on U(g) which coincides with
on g. If 2 e *, then (. I" } is Hermitian and its restriction to the largest
proper ideal of U(g) containing L is identically zero. Hence, (. 1" } induces
a Hermitian form (. l’) on L(). Clearly, (. I’) has the following property,
called the contravariance of (. .).
(2.2) (xu v)=(u x*v) (u, v e L(2), x e ).

Siace the GCM A is assumed to be symmetrizable, (. 1") is positive
definite if is dominant integral ([4, Theorem 1]).

3. Construction of groups associated with the unitary form f. In
this section, we assume that A is a dominant integral element of I;). Let
/ be a weight of L(A) and p an element of * taking the value 1 on each
simple coroot. From the proof of positivity of (. I’) in [4, Theorem 1], we
get the following evaluation of the norm of +-action,

<(3.1) Ilxvl--2-(IA/ --I/1) llxllllvll, (x e
for any element v of the weight space L(A),, where, for e *,
Making use of this inequality together with the formula (1.2), we obtain
an evaluation for the _-action (this time depending on the root a) as

for x e -, a e zl/, v e L(A),. From these evaluations, we have
Theorem 3.1. For any 0<<1, there exists an absorbing, symmetric

and *-invariant subset B of stch that for any v e L(A) there exists a
positive constant C=C such that for any x e B, we have
(3.2) xv ll=Cm (m =0, 1, 2, ...).
Hence, the series =oll(m !)-xvl[ converges uniformly and is bounded on

B.
Let H(A) be the completion of the pre-Hilbert space (L(A), (. [.)) and

B=J0<<B. For any x e B, because of Theorem 3.1, we can define a
linear map exp x from L(A) into H(A) by
(3.3) (exp x)v==0 (m !)-lxv (v e L(A)).
By the contravariance (2.2) of (. ].), each element of acts on L(A) as an

antisymmetric operator. Hence, if x e B , then exp x is an isometry.

More strongly,
Proposition 3.2. i) For any x B , exp x is uniquely extended to

a unitary operator on H(A), and we have
(3.4) (exp x)-l=exp (-x).

ii) If two elements x and y in B commute with each other, then
exp x and exp y also commute. If x +y e B in addition, then we have
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(3.5) (exp x) (exp y)=exp (x+y).
Let U(A) be the group o unitary operators on H(i) equipped with the

strong operator topology. By Proposition 3.2, the map exp rom B into
U(/) is naturally extended to the whole . Let KA be the closed subgroup
of U(/) generated by exp , and HA----exp /--IR.

Definition 3.3 We call K the compact type group associated with
the unitary form , and HA the Cartan subgroup of K

If is finite-dimensional, then KA is a compact Lie group with Lie
algebra and HA is a maximal tcrus of KA. Even when is infinite-
dimensional, HA is compact in many cases as ollows.

Theorem 3.4. Let (1) be the subgroup of * generated by all the
weights of L(4). If () is discrete, then HA is compact and the Pontr]agin
dual of Ha is isomorphic to (A).

For instance, if is o affine type or the GCM A is non-degenerate,
then (//) is always discrete (cf. [1]).

The map exp -+K is differentiable in the ollowing sense.
Theorem 3.5. Let x and v L(A). Then we have

(3.6) (d/dt)((exp tx)v)-(exp tx)(xv) (t e R).
In other wc.rds, every vector of L(A) is differentiable. By this theorem,

the differential of the natural action of KA on H(A) is the original action of
on L(A), and so we have

Theorem 3.6. The natural action of KA on H(A) is irreducible.

4. Group K associated with R. Let 0R be the (--1)-eigenspace of

0 in g. We list some acts about n, similar to those in the finite-dimensional
case.

i) The restriction of (. I’)0 to R is positive definite, and so the standard
invariant orm (. 1") is negative definite on .

Indeed, x e R is written as x h+ ,.e x. with h e )R, x e , and
x 2-1(x + w0(x)) 2-1(h h/e (x./ 0(x.))) ,e (x./ w0(x.)).

Since, w0(g)=g-, the right hand side o the above equality belongs to

.e g", on which (. ].)0 is positive definite.
ii) is equal to the sum of R and /-

iii) is generated by R and /-
Let K be the closed subgroup of KA generated by exp
Definition 4.1. We call K the compact type group associated with

Remark. If g is finite-dimensional, then R is a compact Lie algebra
and its complexification is a semisimple Lie algebra, and so a Kac-Moody
algebra. But in the infinite-dimensional case, C(R)R=R//--IR is not
likely to be a Kac-Moody algebra, since (. I’)0 is positive definite on it.

;. Relations with the groups constructed on lowest weight modules.
Let e )*. We denote by L* the left ideal of U(g) generated by

_
and

{h/ 2(h) h e )}, and put M*(2) U(q)/L*. Then, M*(2) is the lowest weight
Yerma module with lowest weight --2. Let L*(2) be the unique irreducible
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quotient of M*(2). Denote by P* the projection from U(fi) onto U(%) along
the decomposition U()-- U())(R)(U()n_ ++ U()). By the same argument
as in the case of (. I" }, if e %*, we see that the sesquilinear form
(5.1) (x y}* --P*(y*x)(-2) (x, y e U(g))
is Hermitian and induces a non-degenerate contravariant Hermitian form
(" I’)* on L*(2).

We denote by the same symbol Wo the unique antilinear automorphism
on U(g) induced by w0 on g. For e , it is clear that o(L3= L*, and that
the image of any left ideal of U() under Wo is also a left ideal of U(g).
Hence, Wo induces an antilinear bijection 9o from L() onto L*(). Clearly
90 satisfies
(5.2) [2o(XV)=COo(X)f2o(V) (x e 0, v e L()).
In particular, /20 is -equivariant. Furthermore, we obtain

Theorem 5.1. If 2 e , we have
(5.3) (/20(u) f20(v))* =(v lu) (u, v e L(2)).

Corollary 5.2. If 4 e * is dominant integral, then (. ")* is positive
definite.

Consider the case 2 /is a dominant integral element of *. Let H*(A)
be the completion of pre-Hilbert space (L*(A), (. I’)*). We can construct
a group associated with on H*(//) in the same way as in 3. By Theorem
5.1 and (5.2), we see that this group is isomorphic to K and that if we
identify these groups through an.tilinear -equivariance 90, then the action
of K on H*(A) is the contragradient of that on H(A). Thus,

Theorem 5.3. Let A e * be dominant integral. Then, K is repre-
sented unitarily and faithfully on H*(A). This representation is equivalent
to the contagradient of the natural representation on H(A).

Added in Proof. Recently, a similar evaluation as (3.1) and (3.1’) is
given by Mr. E. R. Carrington of Rutgers University. He kindly sent me
a handwritten manuscript (without title), and I am grateful to him.
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