106. Large Time Behavior of a Solution of a Parabolic Equation

By Kunio Nishioka
Department of Mathematics, Tokyo Metropolitan University
(Communicated by Kôsaku Yosida, m. J. A., Dec. 12, 1986)

In this paper, we shall prove that a solution of the following Cauchy problem converges to a constant as $t \rightarrow \infty$.
(1) $\quad \partial_{t} u=A u+\sum_{|\alpha|=2 q} B_{\alpha}(t, x) \partial^{\alpha} u, \quad t>0, \quad x \in \boldsymbol{R}^{d} ; \quad u(0, x)=u_{0}(x)$, where

$$
A \equiv(-1)^{q-1} \rho \sum_{k=1}^{d} \frac{\partial^{2 q}}{\partial x_{k}^{q q}}
$$

with a natural number q and a complex number ρ such that $\operatorname{Re} \rho>0$, $B_{a}(t, x)$'s are in a class $\mathscr{F}^{0}\left(\boldsymbol{R}^{+}, \boldsymbol{R}^{d}\right)$ and "smaller" than $\operatorname{Re} \rho$, and $u_{0}(x)$ is in a class $\mathscr{T}^{0}\left(\boldsymbol{R}^{d}\right)$.

In case of the second order uniformly parabolic equation of the divergence structure, i.e. $\partial_{t} u=\sum_{j, k=1}^{d} \partial / \partial x_{j}\left(A_{j k}(t, x) \partial u / \partial x_{k}\right)$, many authors studied the behavior of the solution as $t \rightarrow \infty$ with the order of the convergence (for example see [1,2]). However their proofs can not be applied to (1), and also in our case u_{0} is not necessarily a function in $L_{1}\left(\boldsymbol{R}^{d}\right)$. Hence our assertion is proved based on the representation of the solution by a Girsanov type formula established in [3,4].

1. For multi index α and $x \in \boldsymbol{R}^{d}$, we put

$$
x^{\alpha} \equiv \prod_{k=1}^{d} x_{k}^{\alpha_{k}} \quad \text { and } \quad \partial^{\alpha} \equiv \prod_{k=1}\left(\frac{\partial}{\partial x_{k}}\right)^{\alpha_{k}}
$$

Give a non-negative number $\kappa . \mathcal{M}^{\kappa}\left(\boldsymbol{R}^{d}\right)$ is a Banach space consisting of all complex valued measures $\mu(d \xi)$ on \boldsymbol{R}^{d} with

$$
\|\mu\|_{x} \equiv \int(1+|\xi|)^{x}|\mu|(d \xi)<\infty
$$

and $\mathscr{P}^{k}\left(\boldsymbol{R}^{d}\right)$ is a Banach space of all Fourier transforms of $\mathcal{M}^{k}\left(\boldsymbol{R}^{d}\right)$, i.e.

$$
f(x)=\int \exp \{i \xi \cdot x\} \mu_{f}(d \xi), \quad \mu_{f} \in \mathscr{M}^{*}\left(\boldsymbol{R}^{d}\right)
$$

and we define as $\|f\|_{k} \equiv\left\|\mu_{f}\right\|_{k} . \quad \mathscr{P}^{0}\left(\boldsymbol{R}^{a}\right)$ is a subset of uniformly continuous and bounded functions, $\sup _{x}|f(x)| \leqq\|f\|_{0}$, and the Schwartz class, $\sin \eta \cdot x$, constants, etc. are contained in $\mathscr{\Psi}^{x}\left(\boldsymbol{R}^{d}\right)$ for any $\kappa \geqq 0$.

Put $\boldsymbol{R}^{+} \equiv[0, \infty)$, and $\mathscr{M}^{c}\left(\boldsymbol{R}^{+}, \boldsymbol{R}^{d}\right)$ denotes a set of all complex valued measures $\mu(t, d \xi), t \in \boldsymbol{R}^{+}$, such that (i) $\mu \in \mathcal{M}^{\kappa}\left(\boldsymbol{R}^{d}\right)$ for each $t \in \boldsymbol{R}^{+}$, and (ii) $\|\mu(t, \cdot)-\mu(s, \cdot)\|_{x} \rightarrow 0$ as $t \rightarrow s$ on $\boldsymbol{R}^{+} . \quad \mathcal{F}^{x}\left(\boldsymbol{R}^{+}, \boldsymbol{R}^{d}\right)$ is a Banach space consisting of all Fourier transforms of $\mathscr{M}^{k}\left(\boldsymbol{R}^{+}, \boldsymbol{R}^{d}\right)$, i.e.

$$
g(t, x)=\int \exp \{i \xi \cdot x\} \mu_{g}(t, d \xi), \quad \mu_{g} \in \mathscr{M}^{\kappa}\left(\boldsymbol{R}^{+}, \boldsymbol{R}^{d}\right)
$$

with a norm $\sup _{t \geq 0}\left\|\mu_{g}(t, \cdot)\right\|_{k} \cdot \mu_{g}^{*} \in \mathscr{M}^{*}\left(\boldsymbol{R}^{a}\right)$ is said a dominating measure of
$\mu_{g} \in \mathscr{M}^{k}\left(\boldsymbol{R}^{+}, \boldsymbol{R}^{d}\right)$, if

$$
\mu_{g}^{*}\left(E^{\prime}\right) \geqq \sup _{t \geqq 0} \int_{E}\left|\mu_{g}\right|(t, d \xi)
$$

for any Borel set $E \subseteq \boldsymbol{R}^{d}$. The Fourier transform $g^{*}(x)$ of this μ_{g}^{*} is called a dominating function for

$$
g(t, x) \equiv \int \exp \{i \xi \cdot x\} \mu_{g}(t, d \xi)
$$

2. Definition. $v(t, x) \in \mathbb{P}^{0}\left(\boldsymbol{R}^{+}, \boldsymbol{R}^{d}\right)$ is a wide sense solution of (1), if there is a sequence of sets $\left\{v^{(m)}(t, x), u_{0}^{(m)}(x)\right\}, m \geqq 1$, in $\mathscr{F}^{0}\left(\boldsymbol{R}^{+}, \boldsymbol{R}^{d}\right) \times \mathscr{F}^{2 q}\left(\boldsymbol{R}^{d}\right)$ which satisfies ; (i) for each $m, \partial_{t} v^{(m)} \in \mathscr{P}^{0}\left(\boldsymbol{R}^{+}, \boldsymbol{R}^{d}\right)$ and $v^{(m)} \in \mathscr{F}^{2 q}\left(\boldsymbol{R}^{+}, \boldsymbol{R}^{d}\right)$, (ii) $v^{(m)}$ is a classical solution of (1) with $u_{0}=u_{0}^{(m)}$, and (iii) $\lim _{m \rightarrow \infty}\left\|u_{0}^{(m)}-u_{0}\right\|_{0}=0$ and $\lim _{m \rightarrow \infty} \sup _{t \geqq 0}\left\|v^{(m)}(t, \cdot)-v(t, \cdot)\right\|_{0}=0$.

Proposition. If $u_{0} \in \mathscr{T}^{0}\left(\boldsymbol{R}^{d}\right)$, and if each $B_{\alpha} \in \mathscr{F}^{0}\left(\boldsymbol{R}^{+}, \boldsymbol{R}^{d}\right)$ has a dominating function $B_{\alpha}^{*} \in \mathscr{P}^{0}\left(\boldsymbol{R}^{d}\right)$ such that $\sum_{|\alpha|=2 q}\left\|B_{\alpha}^{*}\right\|_{0}<\operatorname{Re} \rho$, then there exists a unique wide sense solution of (1).

The proposition is proved by a little modification of the argument in [4], and the solution is represented by using the generalized Girsanov density. For points $y, \zeta, \xi^{(1)}, \ldots$ in R^{d}, set

$$
\begin{aligned}
& \langle y\rangle \equiv\left(\sum_{k=1}^{d} y_{k}^{2 q}\right)^{1 / 2 q} \\
& H(1) \equiv \zeta \quad \text { and } \quad H(l) \equiv \zeta+\xi^{(1)}+\cdots+\xi^{(l-1)} \quad \text { if } l \geqq 2 .
\end{aligned}
$$

We denote by $\mu_{0}(d \xi)$ and $\nu_{\alpha}(t, d \xi)$ the measures corresponding to $u_{0}(x)$ and $B_{\alpha}(t, x)$, respectively. From a similar calculation as in [4], we can also write the solution $u(t, x)$ of (1) as

$$
\begin{align*}
u(t, x)= & \int \mu_{0}(d \zeta) \exp \left\{i \zeta \cdot x-\rho\langle\zeta\rangle^{2 q} t\right\} \tag{2}\\
& +\sum_{n=1}^{\infty} \sum_{\left|\alpha^{(1)}\right|=2 q} \cdots \sum_{\left|\alpha^{(n)}\right|=2 q} I\left(t, x ; \alpha^{(1)}, \cdots, \alpha^{(n)}\right),
\end{align*}
$$

where, with the convention $s_{0} \equiv t$,

$$
\begin{align*}
& I\left(t, x ; \alpha^{(1)}, \cdots, \alpha^{(n)}\right) \equiv \int_{t>s_{1}>\cdots>s_{n}>0} d s_{1} \cdots d s_{n} \int \mu_{0}(d \zeta) \tag{3}\\
& \quad \times \int \nu_{\alpha^{(1)}}\left(t-s_{1}, d \xi^{(1)}\right) \cdots \int \nu_{\alpha^{(n)}}\left(t-s_{n}, d \xi^{(n)}\right) \exp \{i H(n+1) \cdot x\} \\
& \quad \times\left[\prod_{l=1}^{n}(i H(l))^{\alpha^{(l)}} \exp \left\{-\rho\langle H(l)\rangle^{2 q}\left(s_{l-1}-s_{l}\right)\right\}\right] \\
& \quad \times \exp \left\{-\rho\langle H(n+1)\rangle^{2 q} s_{n}\right\} .
\end{align*}
$$

3. Our assertion in this paper is:

Theorem. Under the assumptions in the proposition, $u(t, x)$ converges to a constant in \| $\|_{0}$ sense as $t \rightarrow \infty$.

Corollary. If the measure μ_{0} corresponding to u_{0} is absolutely continuous in the Lebesgue measure, i.e.

$$
\mu_{0}(d \zeta)=\hat{u}_{0}(\zeta) d \zeta \quad \text { for } \hat{u}_{0} \in L_{1}\left(\boldsymbol{R}^{d}\right)
$$

then the constant in the theorem is zero.
4. Using (2) and (3), we shall prove the theorem and the corollary. Let $\left\{u^{(m)}(t, x), u_{0}^{(m)}(x)\right\}$ be a sequence as in the definition.

Step 1. First, we show that $u^{(m)}$ converges to a constant in $\left\|\|_{0}\right.$ sense as $t \rightarrow \infty$, for each m.

Denote by $\mu_{0}^{(m)}$ the corresponding measure to $u_{0}^{(m)}$, and put $\theta \equiv$
$\sum_{|\alpha|=2 q}\left\|B_{\alpha}^{*}\right\|_{0} / \operatorname{Re} \rho . \quad$ Since $\left|y^{\alpha}\right| \leqq\langle y\rangle^{2 q}$ for $|\alpha|=2 q$,

$$
\int_{0}^{\infty}\left\|\partial^{\beta} I^{(m)}\left(t, \cdot ; \alpha^{(1)}, \cdots, \alpha^{(n)}\right)\right\|_{0} d t \leqq \frac{\left\|u_{0}^{(m)}\right\|_{0}}{(\operatorname{Re} \rho)^{n+1}}\left\|B_{\alpha^{(1)}}^{*}\right\|_{0} \cdots\left\|B_{\alpha^{(n)}}^{*}\right\|_{0}
$$

for $|\beta|=2 q$, where $I^{(m)}$ is defined on (3) with $\mu_{0}^{(m)}$ in the place of μ_{0}. By this and (2),

$$
\begin{equation*}
\int_{0}^{\infty}\left\|\partial^{\beta} u^{(m)}(t, \cdot)\right\|_{0} d t \leqq \frac{\left\|u_{0}^{(m)}\right\|_{0}}{(\operatorname{Re} \rho)(1-\theta)} \quad \text { for }|\beta|=2 q \tag{4}
\end{equation*}
$$

After a similar calculation as above, we observe;

$$
\begin{align*}
& \int_{0}^{\infty}\left\|\partial_{t} u^{(m)}(t, \cdot)\right\|_{0} d t \leqq \frac{(1+|\rho|)\left\|u_{0}^{(m)}\right\|_{0}}{(\operatorname{Re} \rho)(1-\theta)}, \tag{5}\\
& \sup _{t \geq 0}\left\|u^{(m)}(t, \cdot)\right\|_{0} \leqq \frac{\left\|u_{0}^{(m)}\right\|_{0}}{1-\theta} \tag{6}
\end{align*}
$$

From (4), we can take a sequence $\left\{t_{p}\right\}$ tending to infinity, and

$$
\lim _{p \rightarrow \infty}\left\|\partial^{\rho} u^{(m)}\left(t_{p}, \cdot\right)\right\|_{0}=0 \quad \text { for }|\beta|=2 q .
$$

On the Taylor expansion

$$
\begin{aligned}
& u^{(m)}\left(t_{p}, x\right)-u^{(m)}\left(t_{p}, 0\right)=\sum_{1 \leqq|\beta| \leqq 2 q-1} \frac{x^{\beta}}{|\beta|!} \partial^{\beta} u^{(m)}\left(t_{p}, 0\right) \\
& \quad+\sum_{|\beta|=2 q} \frac{x^{\beta}}{|\beta|!} \partial^{\beta} u^{(m)}\left(t_{p}, y^{(p)}\right), \quad 0 \leqq\left|y^{(p)}\right| \leqq|x|,
\end{aligned}
$$

we let $p \rightarrow \infty$, then (6) and the fact as stated above yield

$$
\varlimsup_{p \rightarrow \infty}\left|\sum_{1 \leqq|\beta| \leq 2 q-1} \frac{x^{\beta}}{|\beta|!} \partial^{\beta} u^{(m)}\left(t_{p}, 0\right)\right| \leqq \frac{2\left\|u_{0}^{(m)}\right\|_{0}}{1-\theta} .
$$

This requires that $\lim _{p \rightarrow \infty} \partial^{\beta} u^{(m)}\left(t_{p}, 0\right)=0$ for $1 \leqq|\beta| \leqq 2 q-1$, because x may be large enough. Consequently, we obtain

$$
\begin{equation*}
\lim _{p \rightarrow \infty} u^{(m)}\left(t_{p}, x\right)=\lim _{p \rightarrow \infty} u^{(m)}\left(t_{p}, 0\right) \equiv c_{\infty}^{(m)} \tag{7}
\end{equation*}
$$

On the other hand, since (5) derives that

$$
\left\|u^{(m)}(T, \cdot)-u^{(m)}\left(T^{\prime}, \cdot\right)\right\|_{0} \leqq \int_{T^{\prime}}^{T}\left\|\partial_{t} u^{(m)}(t, \cdot)\right\|_{0} d t \rightarrow 0
$$

as $T, T^{\prime} \rightarrow \infty, u^{(m)}(t, x)$ converges in $\left\|\|_{0}\right.$ sense as $t \rightarrow \infty$. Combine this with (7), then it follows that $\lim _{t \rightarrow \infty}\left\|u^{(m)}(t, \cdot)-c_{\infty}^{(m)}\right\|_{0}=0$ for each m.

Step 2. From (6), we see that $\left\{c_{\infty}^{(m)}\right\}_{m \geqq 1}$ is a Cauchy sequence, and set $c_{\infty} \equiv \lim _{m \rightarrow \infty} c_{\infty}^{(m)}$. Notice that

$$
\begin{aligned}
\sup _{t>T}\left\|u(t, \cdot)-c_{\infty}\right\|_{0} \leqq & \sup _{t>T}\left\|u(t, \cdot)-u^{(m)}(t, \cdot)\right\|_{0} \\
& +\sup _{t>T}\left\|u^{(m)}(t, \cdot)-c_{\infty}^{(m)}\right\|_{0}+\left|c_{\infty}^{(m)}-c_{\infty}\right|,
\end{aligned}
$$

and the theorem follows.
Step 3. Due to the assumption in the corollary, we can apply Riemann-Lebesgue's theorem to (2), and get

$$
\lim _{|x| \rightarrow \infty} u(t, x)=0 \quad \text { for each } t \geqq 0
$$

Now a combination of this and the theorem derives the corollary.

References

[1] Eskin, L. D.: On the asymptotic behavior of solutions of parabolic equations as $t \rightarrow \infty$. Izv. Vyss. Ucebn. Zaved. Matematika, 54, 154-164 (1966) (Amer. Math.

Soc. Transl., 87, 89-98 (1970)).
[2] Nash, J.: Continuity of solutions of parabolic and elliptic equations. Amer. J. Math., 80, 931-954 (1958).
[3] Nishioka, K.: Stochastic calculus for a class of evolution equations. Japan. J. Math., 11, 59-102 (1985).
[4] -: A stochastic solution of a high order parabolic equation (to appear in J. Math. Soc. Japan).

