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(Communicated by KSsaku YOSIDA, M.J.A., Dec. 12, 1986)

In this paper, we shall prove that a solution of the following Cauchy
problem converges to.a constant as t--c.
1 ) 3u Au+ B(t, x)3u, t >0,

where

A=(- 1)-’p =,

x e R; u(0, x)=0(x),

2q

with a natural number q and a complex number p such that Re p0,
Be(t, x)’s are in a class (R/, R) and "smaller" than Re p, and 0(x) is in
a class (R).

In case of the second order uniformly parabolic equation of the diver-
gence structure, i.e. u ,.: 3/3x(A(t, x)3u/3x), many authors studied
the behavior o the solution as t with the order of the convergence
(for example, see [1, 2]). However their proofs can not be applied to (1),
and also in our case o is not necessarily a unction in L(R). Hence our
assertion is proved based on the representation of the solution by a
Girsanov type formula established in [3, 4].

1. For multi index a and x e R, we put

x==x and 8--=
Give a non-negative number . qt’(R) is a Banach space consisting

of all complex valued measures g(d) on R with

and (R) is a Banach space of all Fourier transforms of (R), i.e.

f(x) =[ exp {i. x}z(d), Z e (R),

and we define as t[fI].-I]zlI. (R) is a subset of uniformly continuous
and bounded functions, supIf(x)II[fI[o, and the Schwartz class, sin.x,
constants, etc. are contained in (R) or any 0.

Put R+--[0, ), and (R+, R) denotes a set of all complex valued
measures z(t, d), t e R+, such that (i) Z e (R) for each t e R+, and (ii)
(t, .)-- Z(s, .)II0 as tos on R+. (R+, R) is a Banach space consisting
of all Fourier transforms of (R+, R), i.e.

g(t, x)=

with a norm supt,0 IIz,(t, .)II.. z e ’(R) is said a dominating measure of
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RO, if/ e /(R

/*(E) >__sup,>=o d)

for any Borel set E=R. The Fourier transform g*(x) of this is called
a dominating function for

g(t, x).[ exp {i. x}p,(t, d).

2. Definition. v(t, x)e (R+,R) is a wide sense solution of (1), if
there is a sequence of sets {v()(t, x), u>(x)}, m 1, in (R+, R) X g(R)
which satisfies; (i) for each m, 3v() e (R+, R) and v() e (R+, R), (ii)
v( is a classical solution of (1) ith Uo=U), and (iii) lim )--00=0
and lim supto]V(’)(t, .)--v(t, .)0=0.

Proposition. If o e (R), and if each B. e (R+, R) has a dominat-
ing function B e (R) such that .=IIBI]o<Rep, then there exists a
unique wide sense solution of (1).

The proposition is proved by a little modification of the argument in
[4], and the solution is represented by using the generalized Girsanov
density. For points y, {, o),... in R, set

(y}-(E:, y")’,
H(1)-- and H(1)--+()+. +(-) if 12.

We denote by p0(d) and ,.(t, d) the measures corresponding to Uo(X) and
B,(t, x), respectively. From a similar calculation as in [4], we can also
write the solution u(t, x) of (1) as

( 2 ) u(t, x)=.[ z0(d0 exp {;.x

+E:=, E,,, " E , I(t, x ’ )
where, with the convention So-- t,
( 3 I(t, X (I,,..., (n,)[ d81. .dsn [

Jts...>Sn>O J

[L (ill(l))(’ exp [--p(H(1)}q(s_--s)}]
exp {-p(H(n+ 1))%}.. Our assertion in this paper is"

Theorem. Under the assumptions in the proposition, u(t, x) converges
to a constant in o sense as t.

Corollary. If the measure Zo corresponding to Uo is absolutely con-
tinuous in the Lebesgue measure, i.e.

g0(d)=0()d for o e L(R),
then the constant in the theorem is zero.

4. Using .(2)and (3), we shall prove the theorem and the corollary.
Let {u()(t, x), u)(x)} be a sequence as in the definition.

Step 1. First, we show that u() converges to a constant in II0 sense
as t, for each m.

Denote by Z) the corresponding measure to u), and put 0--
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,,: IlB.*llo/Re p. Since lyl=<{y}2q or lal=2q,

f[o 3i,($,, oe, "’’, oe (’)) [o d$< Ilu [o , ,
(Re p)+

lIB.,,, II0" B,,

for 1fll=2q, where I is defined on (3) with Z) in the place of #o. By this
and (2),

] lul for(4) u()(t, ) dt
(Re p)(l_) =2.

After a similar calculation as above, we observe;

(Re )(-0)

(6) su0u)(t,-)o u)
I--

From (4), we can take a sequence {t} tending to infinity, and

lim u()(t, .)o=0 for [=2q.
On the Taylor expansion

xu()(t, x)-u()(t, 0)=,,_ : u()(t, O)

x u()(t, y()), O<y()l<x

we let p, then (6) and the fact as stated above yield
x 2lim q_u()(t,. 0)[=< 1-0

This requires that lim, au()(tv, 0)=0 for lgllg2q-1, because x may
be large enough. Consequently, we obtain
( 7 ) limp_ u()(t, x)=lim; u()(t;, 0)--c(2).

On the other hand, since (5) derives that

as T, T’, u()(t, x) converges in 1[0 sense as to. Combine this with
(7), then it follows that lim_ lu()(t, .)--c(2)[10=0 for each m.

Step 2. From (6), we see that {c)} is a Cauchy sequence, and set
c--lim_ c(2). Notice that

supt>r Ilu(t, .)-CII0sup>T Ilu(t, ")--U()(t, ")110
+ suPt> U()(t, ") C(2 o+lC)-C ,

and the theorem ollows.
Step . Due to the assumption in the corollary, we can apply

Riemann-Lebesgue’s theorem to (2), and get
lim,x, u(t, x)=0 for each t0.

Now a combination of this and the theorem derives the corollary.
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