104. On the Derived Categories of Mixed Hodge Modules

By Morihiko SAITO

Research Institute for Mathematical Sciences, Kyoto University

(Communicated by Kunihiko KODAIRA, M. J. A., Nov. 12, 1986)

Let X be a nonsingular (separated) algebraic variety over C, and MHM(X, Q) the abelian category of mixed Hodge Modules [5]. For simplicity, MHM(X, Q) will be denoted by MHM(X). Let $D^{\flat}MHM(X)$ be the derived category of bounded complexes of MHM(X). Then $D^{\flat}MHM(X)$ are stable by the functors: $f_*, f_!, f^*, f^!, \psi_g, \varphi_{g,1}, \xi_g$ (cf. 1.1), D and \boxtimes . I would like to thank Prof. Kashiwara for useful and stimulating discussions.

§1. Vanishing cycle functors.

1.1. Let g be a function on X. By definition (cf. [5]) we have the exact functors

 $\psi_g: MHM(X) \longrightarrow MHM(X), \qquad \varphi_{g,1}: MHM(X) \longrightarrow MHM(X).$ We define a functor $\xi_g: MHM(X) \longrightarrow MHM(X)$ as follows:

Let $j_q: \{g \neq t\} \rightarrow X \times C$ be the open immersion, and $p: X \times C \rightarrow X$ the projection, where t is the coordinate of C. Then we define

$$\xi_{q} = \psi_{t,1} j_{q1} j_{q}^{*} p^{*}[1].$$

Note that the functors j_{q_1} and $p^*[1]$ exist by definition [5].

1.2. Proposition. We have the functorial exact sequences :

$$\begin{array}{c} 0 \longrightarrow \psi_{g,1} \mathcal{M} \longrightarrow & \xi_g \mathcal{M} \longrightarrow \mathcal{M} \longrightarrow & 0 \\ 0 \longrightarrow & j_1 j^* \mathcal{M} \longrightarrow & \xi_g \mathcal{M} \longrightarrow & \varphi_{g,1} \mathcal{M} \longrightarrow & 0 \end{array}$$

for $\mathcal{M} \in MHM(X)$, where $j: X \setminus g^{-1}(0) \rightarrow X$.

1.3. Remark. Beilinson's functor \mathcal{Z}_{g} used in [1] should correspond to $\xi_{g}j_{*}$.

1.4. Corollary. Let Z be a closed (reduced) subvariety of X, and $MHM_{z}(X)$ (resp. $D_{z}^{b}MHM(X)$) the full subcategory of MHM(X) (resp. $D^{b}MHM(X)$) of the objects with supports (resp. cohomological supports) in Z. Then

 $D^{b} MHM_{Z}(X) \longrightarrow D^{b}_{Z} MHM(X)$

is an equivalence of categories.

This follows from 1.2. by the same argument as in [1], because the adjunction $\operatorname{Hom}(j^*\mathcal{M}, \mathcal{N}) \simeq \operatorname{Hom}(\mathcal{M}, j_*\mathcal{N})$ for an affine open immersion j follows from the existence of the natural morphism $\mathcal{M} \to j_*j^*\mathcal{M}$.

§2. Duals.

2.1. Proposition. MHM(X) (hence $D^b MHM(X)$) is stable by the dual functor **D**.

This follows from the compatibility of the algebraic and topological dualities with respect to the functors ψ , φ_i .

§3. Direct images.

3.1. Let $f: X \to Y$ be a morphism of smooth (separated) algebraic varieties. If X is affine, $\mathcal{H}^{\circ}f_{*}$ (cf. [5]) is right exact and we can derive this by the same argument as in [1], because $f_{*}(M, F)$ is strict for $(M, F) \in MF(\mathcal{D}_{X})$ underlying a mixed Hodge Module, if f is proper [4, 5]. In general, we define

 $f_*: D^b MHM(X) \longrightarrow D^b MHM(Y)$

using an affine Čech covering, cf. [1]. Set $f_1 = Df_*D$.

3.2. Lemma. For $\mathcal{M} \in D^b MHM(X)$ such that $(\mathcal{H}^i f_*)\mathcal{M}^j = 0$ for $i \neq 0$, $f_*\mathcal{M}$ is represented by $(\mathcal{H}^0 f_*)\mathcal{M}^i$.

This follows from the definition (using a result in [1]), because $(\mathcal{H}^i f_*)\mathcal{M} = H^i(f_*\mathcal{M})$ for $\mathcal{M} \in MHM(X)$.

3.3. Corollary. $f_* \simeq f_1$ if f is proper.

This follows from the compatibility of the algebraic and topological dualities with respect to the proper direct images.

§4. Pull-backs.

4.1. Let f be as in §3. We define f^* by the left adjoint functor of f_* and f' by Df^*D , then f' is the right adjoint of f_1 . For $g: Y \rightarrow Z$, we have $(gf)_* \simeq g_*f_*$, hence $(gf)^*$ exists and is represented by f^*g^* , if f^* and g^* exist. Note that j^* is represented by the usual restriction, if j is an open immersion.

4.2. Proposition. Let $i: X \rightarrow Y$ be a closed immersion, and $j: Y \setminus X \rightarrow Y$ the open immersion, then i^* exists and we have the canonical triangle:

 $\longrightarrow j_! j^* \mathcal{M} \xrightarrow{\cdot} \mathcal{M} \xrightarrow{\cdot} i^* \mathcal{M} \xrightarrow{\cdot} \overset{+1}{\longrightarrow}.$

This follows from 1.4.

4.3. Proposition. Let $p: X \times Y \to Y$ be the projection, then p^* exists and is represented by the functor $\boxtimes a_X^* Q^H$, where $a_X: X \to pt$ and $Q^H \in MHM(pt)$ is the object in [5, Theorem 1.8].

We can construct $p^*p_* \rightarrow id$ and $id \rightarrow p_*p^*$, and verify the compatibility condition (the construction of $p^*p_* \rightarrow id$ is due to Kashiwara).

4.4. Remark. The condition: $\operatorname{Gr}_i^w H^j \mathcal{M} = 0$ for i > j (resp. i < j) is stable by the functors: f_i , f^* (resp. f_* , f^i). If \mathcal{M} and \mathcal{N} are pure of weight m and n, $\operatorname{Ext}^i(\mathcal{M}, \mathcal{N}) = 0$ for m < n+i.

4.5. Remark. We can extend these construction to a singular variety Z in X. In particular we have $a_Z^* Q^H \in D^b MHM(Z) (=D^b MHM_Z(X), \text{ cf.}$ 1.4) and $a_{Z*}a_Z^* Q^H \in D^b MHM(pt)$. Note that MHM(pt) coincides with the category of graded polarizable Q-mixed Hodge structures, cf. [2]. We can also eliminate the condition of embedability, using a covering with local embeddings, cf. [4].

§ 5. Extensions.

5.1. Let X and g be as in §1. Set $Z=g^{-1}(0)$ and $U=X\setminus Z$. Then we have an analogue to Deligne-MacPherson-Verdier's theory on extension of perverse sheaves :

No. 9]

5.2. Proposition. MHM(X) is equivalent to the category of the objects: $\{M' \in MHM(U), M'' \in MHM_Z(X), u \in \text{Hom}(\psi_{g,1}j_*M', M''), v \in \text{Hom}(M'', \psi_{g,1}j_*M'(-1)): vu = N\}$ where $j: U \to X$.

This follows from 1.2. (An explicit construction of the inverse functor is obtained by Kashiwara.) We have also MacPherson's version because of the following:

5.3. Lemma. Let p be as in 4.3, then a mixed Hodge Module on $X \times Y$ is a pull-back of an object on Y, iff the underlying perverse sheaf is.

5.4. Remark. By 5.2, the proof of the stability by \boxtimes is reduced to the case of local systems. Then the assertion follows from Kashiwara's theory on admissible variation of mixed Hodge structures [3] and the coincidence of the two categories (this coincidence implies the conjecture in the introduction of [4]).

§6. Cycle classes.

6.1. Let $Z \subset X$ be a closed irreducible subvariety of dimension d_z . Put $Q_x^H = a_x^* Q^H \in D^b MHM(X)$ and $Q_z^H = a_z^* Q^H \in D^b MHM_z(X)$. Because $\operatorname{Gr}_i^W H^j Q_z^H = 0$ for $j > d_z$ or i > j, and $\operatorname{Gr}_{d_z}^W H^{d_z} Q_z^H$ is the intermediate direct image $\underline{IC}_z Q^H$, we have the morphism: $Q_z^H \to \underline{IC}_z Q^H[-d_z]$. Because we have $Q_x^H \to Q_z^H$ by adjunction, we get:

 $Q_x^H \longrightarrow \underline{IC}_z Q^H[-d_z]$ and $\underline{IC}_z Q^H[-d_z] \longrightarrow Q_x^H(p)[2p]$ by duality, where p is the codimension. Their composition

 $cl_Z^{H} \in \operatorname{Hom}(Q_X^{H}, Q_X^{H}(p)[2p]) \simeq \operatorname{Hom}(Q^{H}, a_{X*}Q_X^{H}(p)[2p])$ is called the cycle class of Z. This element in the second group coincides with the composition of $Q^{H} \rightarrow a_{Z*}Q_Z^{H}$ and the direct image by a_{X*} of $Q_Z^{H} \rightarrow I\underline{C}_Z Q^{H}[-d_Z] \rightarrow Q_X^{H}(p)[2p]$. Let $\pi: Y \rightarrow Z$ be a resolution of singularity. Then we have $Q_X^{H} \rightarrow \pi_* Q_Y^{H}$ and $\pi_* Q_Y^{H} \rightarrow Q_X^{H}(p)[2p]$ (by duality), and their composition coincides with cl_Z^{H} in the first group. By Beilinson [6], $\operatorname{Ext}^i(\mathcal{M}, \mathcal{I}) = 0$ for $\mathcal{M}, \mathcal{I} \in MHM(pt)$ if i > 1, hence $\operatorname{Hom}(Q^{H}, a_{X*}Q_X^{H}(p)[2p])$ is isomorphic to Deligne's cohomology if X smooth proper. (It seems cl_Z^{H} coincides with the usual cycle map; i.e. it induces the Abel-Jacobi map.) If X is singular, we replace $Q_X^{H}(p)[2p]$ by $(DQ_X^{H})(-d_Z)[-2d_Z]$. Then the Q-part cl_Z^{Q} of cl_Z^{H} belongs to $H^{-2a_Z}(X, DQ_X(-d_Z))$, that is $H^{2p}(X, Q_X(p))$ if X smooth, and $H_{2a_Z}(X, Q)(-d_Z)$ if X proper.

References

- [1] A. A. Beilinson: On the derived category of perverse sheaves (preprint).
- [2] P. Deligne: Théorie de Hodge II, III. Publ. Math. IHES, 40, 5-57 (1971); 44, 5-77 (1974).
- [3] M. Kashiwara: Variation of mixed Hodge structure (RIMS, preprint).
- [4] M. Saito: Modules de Hodge polarisables (preprint).
- [5] ----: Mixed Hodge Modules. Proc. Japan Acad., 62A, 360-363 (1986).
- [6] A. A. Beilinson: Notes on absolute Hodge cohomology. Contemporary Mathematics, 55, 35-68 (1986).