# 99. A Note on a Global Version of the Coleman Embedding 

By Humio Ichimura<br>Department of Mathematics, University of Tokyo<br>(Communicated by Shokichi Iyanaga, m. J. a., Nov. 12, 1986)

§ 1. Introduction. Let $l$ be an odd prime number and $\left(\zeta_{\nu}\right)_{\nu \geq 1}$ be a fixed system of primitive $l^{\nu}$-th root of unity with $\zeta_{\nu+1}^{l}=\zeta_{\nu}$. Let $\Omega_{\imath}^{-}$be the "minus part" of the maximum pro-l abelian extension $\Omega_{l}$ over the cyclotomic field $\boldsymbol{Q}\left(\mu_{1 \infty}\right)$ unramified outside $l$, and set $\mathbb{\xi}=\operatorname{Gal}\left(\Omega_{\imath}^{-} / \boldsymbol{Q}\left(\mu_{l \infty}\right)\right)$. Let $\mathfrak{H}$ be the inertia group of an extension of $l$ in $\Omega_{l}^{-} / \boldsymbol{Q}\left(\mu_{l \infty}\right)$, and let $\mathfrak{l}^{\prime}$ be the projective limit of the principal unit group of $\boldsymbol{Q}_{l}\left(\zeta_{\nu}\right)$ w.r.t. the relative norm.
R. Coleman [1] constructed an embedding (w.r.t. the system $\left.\left(\zeta_{\nu}\right)_{v}\right)$ $[\mathrm{Col}]^{\prime}: \mathfrak{U}^{\prime} \rightarrow Z_{l}[[T]]^{\times}$, which is a basic tool in the theory of cyclotomic fields. By class field theory, [Col]' induces, naturally, an embedding [Col]: $\mathfrak{U} \rightarrow$ $\left.Z_{l}[[T]]\right]^{\times}$. Under the conjecture ( $\left.\mathbb{C}^{( }\right)$that $L_{l}\left(m, \omega^{1-m}\right) \neq 0$ for any odd integer $m \geq 3$, we can extend [Col] to a homomorphism $\mathscr{G} \rightarrow \boldsymbol{Q}_{l}[[T]] \times$ as follows (where $\omega$ denotes the Teichmüller character and $L_{l}\left(s, \omega^{1-m}\right)$ denotes the $l$-adic $L$ function): Note that for $\rho \in \mathfrak{U}$,

$$
[\operatorname{Col}](\rho)=\exp \left(\sum_{\substack{m \geq 3 \\ \text { odd }}} \frac{\varphi_{m}(\rho)}{m!} X^{m}\right)
$$

where $\varphi_{m}$ is the Coates-Wiles homomorphism and $X=\log (1+T)$. Let $\chi_{m}$ be the Kummer character w.r.t. the system of the $l$-units

$$
\varepsilon_{\nu}(m)=\prod_{\substack{1 \leq a \leq \nu \\(a, l)=1}}\left(\zeta_{\nu}^{a}-1\right)^{a^{m-1}}
$$

i.e. $\chi_{m}$ is a homomorphism $₫ \rightarrow Z_{l}$ such that

$$
\left(\varepsilon_{\nu}(m)^{1 / l \nu}\right)^{\rho-1}=\zeta_{\nu}^{x_{m}(\rho)}
$$

for any $\nu \geq 1$ and $\rho \in \mathbb{G}$. This Kummer character is considered in Soulé [8], Deligne [3] and Ihara [5]. See, also, Ichimura-Sakaguchi [4]. By Coleman, $\chi_{m} \mid \mathfrak{U}=\left(1-l^{m-1}\right) L_{l}\left(m, \omega^{1-m}\right) \varphi_{m}$. Therefore, under the conjecture ( $(\mathfrak{C})$, the homomorphism

$$
\psi: \text { ©f } \ni \rho \mapsto f_{\rho}(T)=\exp \left(\sum_{\substack{m \geq 3 \\ \text { odd }}} \frac{\left(1-l^{m-1}\right)^{-1} L_{l}\left(m, \omega^{1-m}\right)^{-1} \chi_{m}(\rho)}{m!} X^{m}\right) \in \boldsymbol{Q}_{l}\left[\left[T^{\times}\right]\right]
$$

is a global version of [Col], i.e. $\psi \mid \mathfrak{U}=[\mathrm{Col}]$.
The purpose of this note is to study some properties of $\psi$. Clearly, $\psi^{-1}\left(\boldsymbol{Z}_{l}[[T]]^{\times}\right) \supset \mathfrak{l l ~ K e r} \psi$. But since there appear $L_{l}\left(m, \omega^{1-m}\right)^{-1}$ in the coefficient of $T^{m}$ of $f_{\rho}(T)$, there may be some $\rho \in \mathbb{S}$ such that $f_{\rho}(T) \notin Z_{l}[[T]]^{\times}$. The main aim of this note is to show the following

Theorem (Under the conjecture (C)) . $\left.\quad \psi^{-1}\left(Z_{l}[[T]]\right]^{\times}\right)=\mathfrak{H}$ Ker $\psi$.
Further, we prove a proposition on the kernel of $\psi$.
Acknowledgement. The author is very grateful to Prof. Y. Ihara for suggesting him that [Col] can be extended to $\psi$ as stated above and
for encouraging him during the preparation of this note.
§2. Proof of Theorem. In this section, we always assume the conjecture (©). For a $\boldsymbol{Z}_{l}\left[\operatorname{Gal}\left(\boldsymbol{Q}\left(\zeta_{1}\right) / \boldsymbol{Q}\right)\right]$-module $M$ and an integer $j, M^{(j)}=$ $M^{(j \bmod (l-1))}$ denotes the $\omega^{j}$-eigenspace of $M$. For an odd integer $i$ with $1 \leq$ $i \leq l-2, \psi^{(i)}$ denotes the homomorphism $\psi \mid \mathscr{S}^{(i)}: \mathscr{S H}^{(i)} \rightarrow \boldsymbol{Q}_{l}[[T]]^{\times}$. Then the theorem is equivalent to the following

Theorem' (Under the conjecture ( $\left.\mathbb{C}^{\prime}\right)$ ). $\quad\left(\psi^{(i)}\right)^{-1}\left(\boldsymbol{Z}_{l}[[T]]^{\times}\right)=\mathfrak{U}^{(i)} \operatorname{Ker} \psi^{(i)}$.
When $i=1$, we see that $\mathscr{G}^{(1)}=\mathfrak{U}^{(1)}$ by using the Stickelberger theorem (see e.g. Washington [9], Proposition 6.16). So, in this case, Theorem' is obvious. In the following, we always assume $i>1$.

Before the proof for $i>1$, we recall some facts on a certain power series $G_{\rho}$. For an odd integer $j$ and $\rho \in$ ®(s) $^{(j)}$, set

$$
G_{\rho}^{(j)}=\exp \left(\sum_{m \equiv j} \frac{\left(1-l^{m-1}\right)^{-1} \chi_{m}(\rho)}{m!} X^{m}\right)
$$

This power series has been constructed in Ihara [5], and its properties are investigated by G. Anderson, Coleman and Ihara-Kaneko-Yukinari [6]. It is known that for $i>1, G_{\rho}^{(i)} \in Z_{l}[[T]]^{\times}$and $\mathfrak{N}\left(G_{\rho}^{(i)}\right)=G_{\rho}^{(i)}$ where $\mathfrak{R}$ denotes the Coleman norm operator. So, $G_{\rho}^{(i)}(i>1)$ is a Coleman power series of some element of $\mathfrak{U}^{(i)}$.

To prove Theorem ${ }^{\prime}$ for $i>1$, it suffices to show that $\left(\psi^{(i)}\right)^{-1}\left(Z_{t}[[T]]^{\times}\right) \subset$ $\mathfrak{U}^{(i)} \operatorname{Ker} \psi^{(i)}$. Assume $f_{\rho} \in \boldsymbol{Z}_{l}[[T]]^{\times}$with $\rho \in \mathscr{S H}^{(i)}$. We easily see that $f_{\rho}^{g_{i}}=$ $f_{\rho g_{i}}=G_{\rho}^{(i)}$ where $g_{i}\left(\in \boldsymbol{Z}_{l}[[T]]\right)$ is the power series such that $g_{i}\left((1+l)^{s}-1\right)=$ $L_{l}\left(s, \omega^{1-i}\right)$. Let $\lambda$ denote the map : $\boldsymbol{Z}_{l}[[T]]^{\times} \ni f \mapsto \lambda f=(1-\varphi / l) \log f \in \boldsymbol{Z}_{l}[[T]]$, and let $\mathbb{S}$ denote the Coleman trace operator acting on $\boldsymbol{Z}_{l}[[T]]$. Then since $G_{\rho}^{(i)}$ is a Coleman power series, $0=\mathbb{S}\left(\lambda G_{\rho}^{(i)}\right)=\mathbb{S}\left(\lambda f_{\rho}\right)^{g_{i}}$. From this, it is easy to see that $D^{M}\left(\mathcal{S}\left(\lambda f_{\rho}\right)\right)=0$ for some $M(<\infty)$, where $D=(1+T) d / d T$. Hence, by Coleman [2], $\left(D^{M}\left(\lambda f_{\rho}\right)\right)=0$. Set $V=\left\{g \in \boldsymbol{Z}_{l}[[T]] ;\right.$ © $\left.(g)=0\right\}$. By [2], $\left.\boldsymbol{Z}_{l}[[T]]\right]$ $=V+\varphi\left(\boldsymbol{Z}_{l}[[T]]\right)$ (disjoint sum) and $D(V)=V, \quad D\left(\varphi\left(\boldsymbol{Z}_{l}[[T]]\right)\right) \subset \varphi\left(\boldsymbol{Z}_{l}[[T]]\right)$. Using this fact, we easily see that $D^{M}\left(\lambda f_{\rho}-g\right)=0$ for some $g \in V^{(i)}$. But since $i>1, g$ comes from a Coleman power series, i.e. $g=\lambda f_{\varepsilon}$ for some $\varepsilon \in$ $\mathfrak{U}^{(i)}$. Hence, as

$$
\lambda f_{\rho}-g=\sum_{m \equiv i} \frac{L_{l}\left(m, \omega^{1-i}\right)^{-1} \chi_{m}\left(\rho \cdot \varepsilon^{-1}\right)}{m!} X^{m}
$$

$\chi_{m}\left(\rho \cdot \varepsilon^{-1}\right)=0$ except for a finite number of $m$ 's. Since $\chi_{m}$ is continuous in $m$, this implies that $\chi_{m}\left(\rho \cdot \varepsilon^{-1}\right)=0$ for all $m \equiv i$. Therefore, $\rho \cdot \varepsilon^{-1} \in \bigcap_{m \equiv i} \operatorname{Ker} \chi_{m}$ $=\operatorname{Ker} \psi^{(i)}$, hence $\rho \in \mathfrak{H}^{(i)} \operatorname{Ker} \psi^{(i)}$. This completes the proof of Theorem'.
§3. The kernel of $\psi$. Let Cyclo be the subextension of $\Omega_{\imath}^{-} / \boldsymbol{Q}\left(\mu_{l \infty}\right)$ corresponding to $\bigcap_{\substack{m>1 \\ \text { ood }}} \operatorname{Ker} \chi_{m}$. Then under the conjecture ( $\mathfrak{C}$ ), the field Cyclo corresponds to $\operatorname{Ker} \psi$. In [4] §3, we proved that $\Omega_{\imath}^{-}$is unramified over Cyclo and that under the Vandiver conjecture for $l$, Cyclo $=\Omega_{1}^{-}$. In this section, we prove the following

Proposition. (i) Cyclo $=\Omega_{\imath}^{-}$if and only if there exist $\rho \in \mathbb{G}$ and $c \in \boldsymbol{Z}_{t}$ $-\{0\}$ such that for all odd integers $m \geq 1, \chi_{m}(\rho)=c$. (ii) The characteristic
power series of the torsion $\Lambda\left(=Z_{l}[[T]]\right)-$ module $\operatorname{Gal}\left(\Omega_{\imath}^{-} /\right.$Cyclo $)$has no linear factors if and only if $\left[\boldsymbol{Z}_{l}\right.$ : Image $\left.\chi_{m}\right]$ are bounded as odd integers $m \rightarrow \infty$.

Remark. (1) By some computation on $\varepsilon_{\nu}(m)$, the Vandiver conjecture for $l$ is valid if and only if there is $\rho \in \mathbb{G}$ such that for all odd integers $m \geq 1$, $\chi_{m}(\rho)=1$. So, Proposition (i) asserts that the Vandiver conjecture for $l$ and $\Omega_{\imath}^{-}=$Cyclo are "almost" equivalent.
(2) By Soulé, $\chi_{m} \neq 0$, hence $\left[Z_{l}:\right.$ Image $\left.\chi_{m}\right]<\infty$. See [4] § 2.

Proof of the proposition. It suffices to prove the $\Delta=\operatorname{Gal}\left(\boldsymbol{Q}\left(\zeta_{1}\right) / \boldsymbol{Q}\right)$ decomposed version of the proposition. Let $i$ be an odd integer with $1 \leq$ $i \leq l-2$. Let $\Omega_{l}^{(i)}$ denote the subextension of $\Omega_{\imath}^{-} / Q\left(\mu_{l \infty}\right)$ corresponding to $\oplus_{j \neq i} \mathscr{S S}^{(j)}$ and set $C^{(i)}=\Omega_{i}^{(i)} \cap$ Cyclo. For $i=1, C^{(1)}=\Omega_{l}^{(1)}$ because $\mathscr{S S}^{(1)}=\mathfrak{U}^{(1)}$ and $\Omega_{l}^{-} /$Cyclo is unramified. Further, by some computation on $\varepsilon_{\nu}(m)$, we see that there exists $\rho \in \mathscr{G f ( 1 )}^{(1)}$ such that for all $m \equiv 1, \chi_{m}(\rho)=1$. Hence, when $i=1$, the proposition is valid. So, in the following, we assume $i>1$.

First, we assume the conjecture (5). Let $G^{(i)}$ denote the map: ©fs ${ }^{(i)} \ni$ $\rho \mapsto G_{\rho}^{(i)} \in Z_{l}[[T]]^{\times}$. Then Image $\lambda \circ G^{(i)} \subset V^{(i)}$. We easily see that torsion 1 modules $V^{(i)} /$ Image $\lambda \circ G^{(i)}$ and $\operatorname{Ker} G^{(i)}\left(=\operatorname{Ker} \psi^{(i)}\right)$ have the same characteristic power series by using the facts (1) $\Omega_{l}^{-}$Cyclo is unramified, (2) $\lambda \circ[\mathrm{Col}]\left(\mathfrak{U}^{(i)}\right)=V^{(i)}$ (see [2]) and (3) $f_{\rho g_{i}}=G_{\rho}^{(i)}$. Now our assertions follow immediately from this and the facts (4) $V^{(i)}$ is a free $\Lambda$-module generated by $\sum_{m \equiv i}(1 / m!) X^{m}$ (see [2]), (5) ©fs $^{(i)}$ has no nontrivial finite $\Lambda$-submodule (see Iwasawa [7]).

The proof of the general case goes through similarly by considering power series

$$
\begin{aligned}
& \exp \left(\sum_{m}^{\prime} \frac{\left(1-l^{m-1}\right)^{-1} L_{l}\left(m, \omega^{1-m}\right)^{-1} \chi_{m}(\rho)}{m!} X^{m}\right) \\
& \exp \left(\sum_{m}^{\prime} \frac{\varphi_{m}(\rho)}{m!} X^{m}\right) \text { and } \exp \left(\sum_{m}^{\prime} \frac{\left(1-l^{m-1}\right)^{-1} \chi_{m}(\rho)}{m!} X^{m}\right)
\end{aligned}
$$

instead of $f_{\rho},[\operatorname{Col}](\rho)$ and $G_{\rho}^{(i)}$ respectively where the sum $\sum_{m}^{\prime}$ is taken over all natural numbers with $m \equiv i(\bmod l-1)$ and $L_{l}\left(m, \omega^{1-m}\right) \neq 0$.

## References

[1] R. Coleman: Division values in local fields. Inv. Math., 53, 91-116 (1979).
[2] -: Local units modulo circular units. Proc. Amer. Math. Soc., 89, 1-7 (1983).
[3] P. Deligne: (letters to Bloch).
[4] H. Ichimura and K. Sakaguchi: The non-vanishing of certain Kummer character $\chi_{m}$ (after Soulé), and some related topics (to appear in Adv. St. in Pure Math., 12).
[5] Y. Ihara: Profinite braid groups, Galois representations and complex multiplications. Ann. of Math., 123, 43-109 (1986).
[6] Y. Ihara, M. Kaneko and A. Yukinari: On some properties of the universal power series for Jacobi sums (to appear in Adv. St. in Pure Math., 12).
[7] K. Iwasawa: On $Z_{l}$-extensions of algebraic number fields. Ann. of Math., 98, 246-326 (1973).
[8] C. Soulé: (letter to Ihara).
[9] L. Washington: Introduction to Cyclotomic Fields. Graduate Texts in Math., Springer-Verlag, New York (1982).

