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1. Introduction. Let be an odd prime number and ()21 be a
fixed system of primitive/-th root of unity with /,=. Let /2 be the
"minus part" of the maximum pro-/abelian extension 2 over the cyclotomic
field Q(/) unramified outside l, and set =Gal (7/Q(z)). Let be the
inertia group of an extension of in 9/Q(p,), and let H’ be the projective
limit of the principal unit group of Q() w.r.t, the relative norm.

R. Coleman [1] constructed an embedding (w.r.t. the system ())
[Col]’ ’Z[[T]], which is a basic tool in the theory of cyclotomic fields.
By class field theory, [Col]’ induces, naturally, an embedding [Col]’
Z[[T]]. Under the conjecture () that L(m, -)0 for any odd integer
m3, we can extend [Col] to a homomorphism Q[[T]] as follows (where

denotes the Teichmfiller character and L(s, -) denotes the /-adic L-
function)" Note that for p e H,

[Col]()=exp ( 9(P) X)
odd

where 9 is the Coates-Wiles homomorphism and X=log (I+T). Let X
be the Kummer character w.r.t, the system of the/-units

,(m)= (--1)"-,
(a,/) =1

i.e. Z is a homomorphismZ such that
((m)/)-

for any ,1 and p e . This Kummer character is considered in Soul [8],
Deligne [3] and Ihara [5]. See, also, Ichimura-Sakaguchi [4]. By Coleman,
Z[H=(1--l-)L(m, -). Therefore, under the conjecture (), the
homomorphism

is a global version of [Col], i.e. g=[Col].
The purpose of this note is to study some roerties of . Clearly,

-(Z[[T]]x)Dg Ker . But since there aear L(m, -)- in the eoeeient
of T of fo(T), there may be some 0 e sueh that f(T) Z[[T]]. The
main aim of this note is to show the ollowing

Theorem (Under the conjecture ()). -(Z[[T]])=g Ker .
urther, we rove a roosition on the kernel of .
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2. Proof of Theorem. In this section, we always assume the con-

jecture (). For a Z[Gal (Q(5)/Q)]-module M and an integer ],
M((-)) denotes the w-eigenspace of M. For an odd integer i with 1
il--2, () denotes the homomorphism [()"()Q[[T]]. Then the
theorem is equivalent to the following

Theorem’ (Under the conjecture ()). (p(*))-(Z[[T]])=() Ker
When i=1, we see that (’)=(’) by using the Stickelberger theorem

(see e.g. Washington [9], Proposition 6.16). So, in this case, Theorem’ is
obvious. In the following, we always assume i1.

Before the proof for i1, we recall some facts on a certain power
series G,. For an odd integer ] and p e (), set

G)=exp( (1--/-)-(P)m X)"
This power series has been constructed in Ihara [5], and its properties are
investigated by G. Anderson, Coleman and Ihara-Kaneko-Yukinari [6].
It is known that or i>1, G)e Z[[T]] and (G)) =() where denotes
the Coleman norm operator. So, G(j (i1) is a Coleman power series of
some element of

To prove Theorem’ for il, it suffices to show that (())-(Z[[T]])c
() Ker (). Assume f, e Z[[T]] with p e (). We easily see that fg=
f,=G) where g(e Z[[T]]) is the power series such that g((l+/)’--l)=
L(s, w-). Let 2 denote the map" Z[[T]] ff=(1--/l) log f e Z[[T]],
and let denote the Coleman trace operator acting on Z[[T]]. Then since

G) is a Coleman power series, 0=(G))=(2f,)q,. From this, it is easy
to see that D((f,))=0 for some M(), where D=(1 + T)d/dT. Hence,
by Coleman [2], (D(f,))=0. Set V=(g e Z[[T]];(g)=O}. By [2], Z[[T]]
=V + (Z[[T]]) (disjoint sum) and D(V) V, D((Z[[T]])) (Z[[T]]).
Using this fact, we easily see that D(2f,--g)=O for some g e V(). But
since il, g comes from a Coleman power series, i.e. g=2f for some
(). Hence, as

f_g= L(m, -)-Z(p.-) X

Z(p.-’)=0 except for a finite number of m’s. Since Z is continuous in
m, this implies that (p.-)=0 for all mi. Therefore, p.-’ e Ker
=Ker (), hence p e H() Ker (). This completes the proof of Theorem’.

3. The kernel of . Let Cyclo be the subextension of 9V/Q()
corresponding to ,Ker Z. Then under the conjecture (), the field

odd

Cyclo corresponds to Ker . In [4] 3, we proved that 9V is unramified
over Cyclo and that under the Vandiver conjecture for l, Cyclo=9V. In
this section, we prove the following

Proposition. (i) Cyclo= if and only if there exist p e and c e Z
--{0} such that for all odd integers ml, Z(p)=c. (ii) The characteristic
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power series of the torsion A (=Z[[T]])-module Gal (/2V/Cyclo) has no linear
factors if and only if [Z" Image Z] are bounded as odd integers m--.c.

Remark. (1) By some computation on (m), the Vandiver conjecture
for is valid if and only if there is p e (R) such that for all odd integers m_l,
(p)=l. So, Proposition (i) asserts that the Vandiver conjecture for
and 9 =Cyclo are "almost" equivalent.

(2) By Soul, Z:/=0, hence [Z" Image Z] c. See [4] 2.
Proof of the proposition. It suffices to prove the A--Gal (Q(I)/Q)-

decomposed version of the proposition. Let i be an odd integer with 1_
i_l--2. Let 9) denote the subextension of 9V/Q(/) corresponding to

(R)() and set C() =/2[) Cyclo. For i=1, C(" =9" because (R)()_._(1)

and 9;/Cyclo is unramified. Further, by some computation on (m), we
see that there exists p e (R)() such that for all m_l, ;((p)=l. Hence, when
i--1, the proposition is valid. So, in the following, we assume il.

First, we assume the conjecture (). Let G() denote the map" (R)()

pG() e Z[[T]] Then Image G() V() We easily see that torsion A-
modules V()/Image oG() and KerG() (=Ker ()) have the same charac-
teristic power series by using the acts (1) /2v/Cyclo is unramified, (2)
o [Col](11())=V() (see [2]) and (3) fq,--c.()_ Now our assertions follow
immediately rom this and the facts (4) V() is a free A-module generated
by .=(1/m!)X (see [2]), (5) (R)() has no nontrivial finite A-submodule
(see Iwasawa [7]).

The proof of the general case goes through similarly by considering
power series

exp (’ (1--l-)-L(m’ -)-;’(P) X")m!

exp (’ (P)m! X) and exp (’ (i--/-l)-lZ(P)ri- X)
instead of f, [Col](p) and G() respectively where the sum ’ is taken over
all natural numbers with m=_i (mod/-1) and Lt(m, wl-)=/=0.
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