97. A Note on Heegaard Splittings of Non-orientable Surface Bundles over S¹

Ву Капјі Могімото

Department of Mathematics, Kobe University

(Communicated by Kôsaku Yosida, M. J. A., Nov. 12, 1986)

Let F_g be an orientable closed surface with $H_1(F_g, Z) \cong \bigoplus^{2g} Z$, and N_h be a non-orientable closed surface with $H_1(N_h, Z_2) \cong \bigoplus^h Z_2$. In [2], Takahashi and Ochiai proved that F_g $(N_n$ resp.)-bundle over S^1 admits a Heegaard splitting of genus 2g+1 (h+1 resp.). Further they proved that for any $g (\geq 0)$ there exists an F_g -bundle over S^1 which admits a Heegaard splitting of genus two (Theorem 2 of [2]). In this note, we will show a similar result for non-orientable surface bundles.

Theorem. For any $h (\geq 1)$ there exists an N_h -bundle over S^1 which admits a Heegaard splitting of genus two.

Proof. Case 1. h is odd.

Let E_h be a (2, h)-torus knot exterior in S^s . Then E_h is an F_g^1 -bundle over S^1 , where F_g^1 is an F_g with one hole and g = (h-1)/2 (see Ch. 10 of [1]). Let λ be the boundary of a fiber of the fibration of E_h , and μ be a meridian in ∂E_h such that λ intersects μ in a single point. Let B be a Möbius band. Put $L = B \times S^1$, $\alpha = \partial B \times \{a\}$ and $\beta = \{b\} \times S^1$, where $a \in S^1$ and $b \in \partial B$. Let fbe a homeomorphism of ∂E_h to ∂L with $f(\lambda) = \alpha$ and $f(\mu) = \beta$. Let M_h be a 3-manifold obtained from E_h and L by identifying ∂E_h and ∂L by f. Then it is clear that M_h is an N_h -bundle over S^1 .

Since (2, h)-torus knot is a 2-bridge knot, there exists a 2-sphere with four holes S properly embedded in E_h such that each component of ∂S is a meridian. Then S cuts E_h into two genus two orientable handlebodies V_1 and V_2 . Let μ_1, μ_2, μ_3 and μ_4 be four components of ∂S and put $f(\mu_i) \cap \alpha =$ $\{x_i\}$ (i=1, 2, 3, 4). Then, by changing the letters if necessary, there exist two essential arcs τ and δ in $B \times \{a\}$ with $\partial \tau = \{x_1, x_2\}$ and $\partial \delta = \{x_2, x_4\}$. Then $(\tau \cup \delta) \times S^1$ cuts L into two solid tori T_1 and T_2 . Then we may assume that $f(\operatorname{Cl}(\partial V_i - S)) = \operatorname{Cl}(\partial T_i - (\tau \cup \delta) \times S^1)$ (i=1,2). Let H_i be a 3-manifold obtained $V_i \cup T_i$ by identifying x with f(x) for any $x \in \operatorname{Cl}(\partial V_i - S)$ (i=1,2), then H_i is a non-orientable genus two handlebody. Therefore $M_h = H_1 \cup H_2$ is a Heegaard splitting of genus two of M_h .

Case 2. h is even.

Let E_h be a (2, h)-torus link exterior in S^3 . Then E_h is an F_q^2 -bundle over S^1 , where F_q^2 is an F_q with two holes and g=(h-2)/2 (see Ch. 10 of [1]). Let λ_1, λ_2 be two components of the boundary of a fiber of the fibration of E_h and μ_1, μ_2 be two meridians in ∂E_h such that λ_i intersects μ_i in a single point (i=1, 2). We give orientations to $\lambda_1, \lambda_2, \mu_1$ and μ_2 as follows. The orientation of μ_i is a fixed direction vertical to a fiber (i=1,2). The orientation of λ_i is the direction induced from an orientation of a fiber (i=1,2).

Let T_1 , T_2 be two components of ∂E_h with $(\lambda_i \cup \mu_i) \subset T_i$ (i=1,2). Let f be a homeomorphism of T_1 to T_2 such that $f(\lambda_1) = \lambda_2$, $f(\mu_1) = \mu_2$ and both $f \mid \lambda_1$ and $f \mid \mu_1$ are orientation preserving. Let M_h be a 3-manifold obtained from E_h by identifying T_1 and T_2 by f. Then it is clear that M_h is an N_h -bundle over S^1 .

Let S be a 2-sphere with four holes in E_h which cuts E_h into two genus two handlebodies V_1 and V_2 . Then, by moving f by an isotopy if necessary, we may assume that $f(\operatorname{Cl}(\partial V_i - S) \cap T_1) = \operatorname{Cl}(\partial V_i - S) \cap T_2$ (i=1,2). Let H_i be a 3-manifold obtained from V_i by identifying x with f(x) for any $x \in$ $\operatorname{Cl}(\partial V_i - S) \cap T_1$ (i=1,2), then H_i is a non-orientable genus two handlebody. Therefore $M_h = H_1 \cup H_2$ is a Heegaard splitting of genus two of M_h .

This completes the proof.

Remark. In Case 2, if we choose f so that $f|\lambda_1$ is orientation reversing and $f|\mu_1$ is orientation preserving, then M_h is an F_{g+1} -bundle over S^1 which admits a Heegaard splitting of genus two. This is an alternative proof of Theorem 2 of [2].

References

- D. Rolfsen: Knots and links. Mathematics Lectures Series, 7, Publish or Perish Inc., Berkeley, Ca. (1976).
- [2] M. Takahashi and M. Ochiai: Heegaard diagrams of torus bundles over S¹. Comment. Math. Univ. S. Paul., 31, 63-69 (1982).