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97. A Note on Heegaard Splittings of Non-orientable
Surface Bundles over S'
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Let F', be an orientable closed surface with H,(F,, Z)=®* Z, and N,
be a non-orientable closed surface with H,(N,, Z,)=®" Z,. In [2], Takahashi
and Ochiaj proved that F', (N, resp.)-bundle over S' admits a Heegaard
splitting of genus 2941 (h+1 resp.). Further they proved that for any
9 (=0) there exists an F',-bundle over S' which admits a Heegaard splitting
of genus two (Theorem 2 of [2]). In this note, we will show a similar
result for non-orientable surface bundles.

Theorem. For any h (=1) there exists an N,-bundle over S' which
admits a Heegaard splitting of genus two.

Proof. Case 1. h is odd.

Let E, be a (2, h)-torus knot exterior in S®. Then E, is an F}-bundle
over S', where F}, is an F', with one hole and g=(h—1)/2 (see Ch. 10 of [1]).
Let 2 be the boundary of a fiber of the fibration of £,, and x be a meridian
in oF, such that 2 intersects p in a single point. Let B be a Mdobius band.
Put L=BX S8, a=0B x{a} and f={b}x S', where a e §' and bedB. Let f
be a homeomorphism of 9E, to oL with f())=« and f(x)=p. Let M, be a
3-manifold obtained from E, and L by identifying 0F, and oL by f. Then
it is clear that M, is an N,-bundle over S'.

Since (2, h)-torus knot is a 2-bridge knot, there exists a 2-sphere with
four holes S properly embedded in E, such that each component of S is a
meridian. Then S cuts E, into two genus two orientable handlebodies V,
and V,. Let y, p, s and g, be four components of 3S and put f(w)Na=
{x;} (=1,2,3,4). Then, by changing the letters if necessary, there exist
two essential arcs 7 and 6 in B X {a} with or={x,, x,} and 36 ={x,, ,}. Then
(rUd) X S* cuts L into two solid tori T, and T,. Then we may assume that
FC1@V,—8)=Cl(@T,—(rUs) XS (i=1,2). Let H, be a 3-manifold ob-
tained V,UT; by identifying x with f(x) for any ze Cl(@V,—S) (i=1,2),
then H, is a non-orientable genus two handlebody. Therefore M,=H,UH,
is a Heegaard splitting of genus two of M,.

Case 2. I is even,

Let E, be a (2, h)-torus link exterior in S*. Then E, is an F-bundle
over S', where F? is an F, with two holes and g=(h—2)/2 (see Ch. 10 of
[1]). Let 2, 2, be two components of the boundary of a fiber of the fibra-
tion of E, and y, y, be two meridians in 0F, such that 1, intersects g, in a
single point (¢i=1,2). We give orientations to 1, 2,, 1, and g, as follows.
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The orientation of y, is a fixed direction vertical to a fiber (i1=1,2). The
orientation of A, is the direction induced from an orientation of a fiber
(=1,2).

Let T, T, be two components of 6E, with (1, Up)CT, ¢=1,2). Let f
be a homeomorphism of T, to T, such that f(3,)=2,, f(x,)=g. and both f|2,
and f|p are orientation preserving. Let M, be a 3-manifold obtained
from E, by identifying T, and T, by f. Then it is clear that M, is an N,-
bundle over S'.

Let S be a 2-sphere with four holes in E', which cuts F, into two genus
two handlebodies V, and V,. Then, by moving f by an isotopy if necessary,
we may assume that f(Cl@V,—S)NT)=Cl@V,—S)NT, ((=1,2). Let H,
be a 8-manifold obtained from V, by identifying « with f(x) for any ze
Cl(@V,—S)NT, (i=1,2), then H, is a non-orientable genus two handlebody.
Therefore M,=H,U H, is a Heegaard splitting of genus two of M.

This completes the proof.

Remark. In Case 2, if we choose f so that f|2, is orientation revers-
ing and f|y is orientation preserving, then M, is an F',,,-bundle over S'
which admits a Heegaard splitting of genus two. This is an alternative
proof of Theorem 2 of [2].
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