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1o Introduction. Let X, Y be normed linear spaces and let T be a
linear operator with domain D(T) in X and range R(T) in Y. The null
space of T is denoted by N(T). Then the lower bound (or reduced minimum
modulus) of T is defined by

’(T) =sup {" :]] Tx[[ dist (x, N(T)) (x e D(T))}
where dist (x,N(T)) denotes the distance from x to N(T). If X, Y are
Banach spaces and T is a closed linear operator, then it is well known that
R(T) is a closed subspace of Y if and only if 7(T)0 (cf. [2]).

Now let Z be another normed linear space and let S be a linear operator
from Y to Z. Then the product ST of S and T is defined as a linear
operator rom X to Z. In [3], an estimate is obtained bounding 7(ST)
from below in terms of the product of 7(S) and ’(T). The main purpose
o] this note is to give the estimate of ’(), where denotes the restriction
of S to R(T). As a consequence, we can obtain a result of R. Bouldin
which gives a necessary and sufficient condition for the product ST to have
closed range in case S is a bounded linear operator with D(S)--Y (cf. [i]).

2. Gap and angular distance between closed subspaces Let E be a
normed linear space and let M, N be non-trivial closed subspaces of E. We
denote by S the set of all x e M such that Ilxll=l. In this section, we
consider the ollowing quantities between M and N"

(M, N)=inf {llx--YIl x e S, y e SN),
(M, N)=sup {fl dist (x,N)flllxll (x e M)},
7(M, N) =sup {7 dist (x, N)7 dist (x, M gl N) (x e M)},

and study the relations between them. a(M,N) is called the angular
distance between M, N; while 7(M, N) is called the gap between M, N (cf.
[1], [2]). For a Banach space E, it is well known that ’(M, N)0 if and
only if M+N is a closed subspace of E (cf. [2]).

Lemma 1. /5(M, N)(M, N)2/5(M, N).
Proof. Since we have

(M, N)= inf {dist (x, S) x e S},
(M, N)= inf {dist (x, N) x e S),

it is clear that (M,N)=(M,N). The other inequality follows from the
following fact which is proved in [2] on p. 198"

dist (x, S) 2 dist (x, N)
for any x e E with x 1.

Theorem 2. (M,N)(M/MN, N/MN)2(M,N).
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Proof. First we consider the special case where MN--{O}. Then
by the above lemma, we have

’(M, N)=(M, N)_(M, N)<=2fl(M, N)---2’(M, N).
In the general case where M N:/:(0}, we set Eo=M(N and consider

the quotient space E--ElEo. We denote by the coset to which u belongs.
Since Eo is closed, E is also a normed linear space under the quotient norm.
Let M=M/Eo and N=N/Eo. Then M and N are closed subspaces of E
with M(N={0} and it is easily verified that

dist (, N)= dist (u, N),
dist (, M N)= II- dist (u, M N),

so that we have (M, N)=(M,N). Hence the proof of the general case
follows from the above lemma as follows"

’(M, N)=(M, N)ga(M, N)g2fl(M, N)=2’(M, N).
Corollary 3. Let E be a Banach space and let M,N be closed sub-

spaces of E. Then the following conditions are equivalent"
(1) M+N is a closed subspace of E.
(2) ’(M,N))O. (3) a(M/M(N, N/M(N)O.
Remark 4. If E is an inner product space over the complex numbers,

then we have the following improved estimate between a(M, N) and/(M, N)"
(M, N)_<_a(M, N)____(M, N).

This follows from the following relations"
[c(M, N)] 211- r(M, N)], [fl(M, N)]2+ [r(M, N)]2= 1

where r(M, N) is defined by
r(m, N)=sup {I (a, b}l" a e S, b e S}.

3. Estimate of the lower bound. Throughout this section, we as-
sume that X, Y, Z are normed linear spaces, T is a linear operator from
X to Y, S is a non-trivial linear operator from Y to Z and R(T), R(S) are
closed subspaces of Y,Z respectively. Moreover, we denote by : the
restriction of S to R(T)" (Tx)--S(Tx) (x e D(ST)).

In this section, we shall prove the following estimate of the lower
bound of S.

Theorem 5. (1) (S)>=’(S)(R(T), N(S)).
(2) If S is a bounded linear operator with D(S)=Y, then we have"

IISII ’(R(T), N(S)) >__’().
Proof. Since N()=N(S) R(T), we have

ll(Tx)ll=llS(Tx)ll>=r(S) dist (Tx, N(S))
>__’(S)’(R(T), N(S)) dist (Tx, N(S) R(T))
=’(S)’(R(T), N(S)) dist (Tx, N(:))

for each x e D(ST). Hence we get r(:)>__’(S)’(R(T), N(S)).
Now assume that S is a bounded operator with D(S)=Y and let x e

D(ST)=D(T). Then for any y e N(S), we have

and hence

IISTxlI<=IISII dist (Tx, N(S)).
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On the other hand, we also have
I]STxll=ll(Tx)llr() dist (Tx, N(:))

=’() dist (Tx, N(S) R(T)).
Therefore we get

IISII dist (Tx, N(S))_7(:) dist (Tx, N(S) R(T))
for each x e D(T), which proves that

}}S}I ’(R(T), N(S)) ’(S).
This completes the proof of the theorem.

The following corollary is essentially proved by R. Bouldin in [1].
Corollary 6. Let X, Y,.Z be Banach spaces and let S be a bounded

linear operator with D(S)--Y. Assume that R(S) and R(T) are closed sub-
spaces of Z and Y respectively. Then the following conditions are
equivalent

(1) R(ST) is a closed subspace of Z.
(2) N(S)+R(T) is a closed subspace of Y.
Proof. Since R()=R(ST), this follows from Corollary 3 and Theorem

Corollary 7. Under the same assumptions as in Corollary 6, we have
the following estimate of () in terms of the angular distance"

]IS]I a(N(S)/Yo, R(T)/Yo)>=7()
.>__(1/2)(S)a(N(S)/Yo, R(T)/Yo)

where Yo N(S) R(T).
Proof. This follows from Theorems 2 and 5.
Finally, we note that the following estimate holds between ’() and

7(ST).
Theorem 8. ’(ST)’()’(T).
Proof. For any x e D(T), we have

dist (Tx, N(S) R(T))>__’(T) dist (x, N(ST))
by Lemma 1 in [3]. Hence we get

IISTxlI--tI (Tx) II>__.() dist (Tx, N(:))
=’() dist (Tx, N(S) R(T))
>___’()’(T) dist (x, N(ST))

for any x e D(ST). This proves the desired estimate.
The ollowing corollary, which is proved in [3], is immediate from

Theorems 5 and 8.
Corollary 9o ’(ST)’(S)’(T)’(R(T), N(S)).
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