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1. Introduction. In this paper we discuss the asymptotic behavior
of a semilinear heat equation on the circle. Namely we shall show that
the w-limit set of any solution contains at most one element. This implies
that any bounded global solution converges to an equilibrium solution as

To be more precise, consider the initial value problem
u=u+f(u), x e R, tO,

(1.1) u(x, 0) =Uo(X), x e R,
Uo(X + 1) u0(x), x e R,

where f is a C-function on R and u0 is a continuous unction of period 1.
It is well known that (1, 1) has a unique classical solution u(x, t) such that
u(., t)e L(R) or every t e [0, s(u)), where [0, s(u)) denotes the maximal
interval of existence or the solution u. Also one can easily show that
u(x+l, t)=u(x, t)or x e R, t0. Therefore (1.1) can be regarded as an
equation on a circle.

For a solution u of (1.1), its w-limit set is defined by
(1.2) co(u)= ( closure {u(.,r):r>t},

O<t<s(u)

where the "closure" is with respect to the topology of C(R).
A standard a priori estimate and dynamical systems argument show

that (u)=/= if and only if s(u)- c and there exists a sequencetc such
that u(., t) remains bounded as n-.c, in which case w(u) is a connected
locally compact subset of C(R). Using the Lyapunov functional, one can
show that each e w(u) is an equilibrium of (1.1), that is, satisfies

"+f()=0, x e R,(1.3)
(x+1) (x), x e R.

For the details, see, for instance, [1] and [4].
For each e R, we let (x; 2) be the solution of the following initial

value problem for ordinary differential equation:

"+f()=o, x e R,
(1.4) (0; )=,

’(0; )=0,
where stands for d/dx. Define

A(f)--{2 e R (x; ) is nonconstant and 1-periodic in x}.
Our main result is the following"
Theorem. If 4(f) contains no interior point, then o(u) contains at
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most one element.
A direct consequence is
Corollary. If A(f) contains no interior point and u is a solution of

(1.1), then either limt8(u)[[u(., t)[IL(R)=, or there exists a solution (x)
of (1.3) such that limt u(., t)= in C2(R), with s(u)= c.

In his pioneering work [3], Matano obtained an analogous (and
stronger) result in the case of initial-boundary value problems on a compact
interval. His approach is based on the investigation of the behavior of u
at the boundary of the interval via the maximum principle. The main
difficulty in our case is that a circle has no boundary, so that his argument
does not directly apply. This difficulty is overcome by comparing u with
its reflection (Lemma I in 2).

2. Proof of Theorem. The following lemma is essential"
Lemma 1. If q e o(u) and ’(a)O (resp. 0) at some a e R, then there

exists TO such that u(a, t)_O (resp. _0) for any t_T.
Proof. Let

(x)--(x)--(2a--x),
v(x, t)=u(x, t)-u(2a--x, t).

By (1.1) and (1.3), we obtain

"+b(x) =0, x e R,
(2.1) (a) =(a+l) =0,

’(a) 2q’(a)> 0,
v=v+b(x, t)v, x e R, tO,

(2.2) v(a, t)=v(a+l, t)=0, t_0,
v(a, t)=2u(a, t), t0,

where b(x) and b(x, t) are continuous functions. We remark that e o(v),
where (o(v) is defined in the same manner as in (1.2). Combining (2.1)
and (2.2), and following the argument found in [3], one can prove Lemma
1. We omit the details.

Using Lemma 1, one can easily prove the following"
Lemma 2. Let , e o(u) be both nonconstant and let a e R. Then

’(a)O (resp. 0, =0) implies 4x’(a)O (resp. 0, =0).
Proof of Theorem. We consider only the case where (o(u) contains a

nonconstant function, say , since otherwise the proof is much easier by
the connectedness of o(u) and the maximum principle. By making a
translation in x-axis if necessary, we may assume without loss of generality
that ’(0)=0. Let

(u)={ e R’(. ) e (u)}.
Then, by Lemma 2, o(u)=((. ;2)’ e I(u)}. As w(u) is connected and
closed, I(u) is a closed interval containing (0). Since A(f) contains no
interior point and (. ) are nonconstant for e R sufficiently near (0),
it follows that (u) has only one element. This proves the theorem.

Remark. Our assumption on A(f)in Theorem is very technical and
it does not cover the linear case, say f(u)-4=ku, with k a nonzero integer,
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although in this case the uniqueness of the -limit point is obvious. But
we note that it covers a wide class of nonlinear equations including the
case where f(u)=Alul u (AO, pO) and the case where f(u)=(A--Blul’)u
(A0, B0, p0).
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