94. Representations of a Solvable Lie Group on $\hat{\partial}_{b}$ Cohomology Spaces

By Takaaki Nomura
Department of Mathematics, Kyoto University
(Communicated by Kôsaku Yosida, m. J. A., Nov. 12, 1986)

Let $(\mathfrak{g}, j, \omega$) be a normal j-algebra introduced by Pyatetskii-Shapiro [5] (see below). We denote by G the connected and simply connected Lie group with Lie algebra g. The aim of this note is to give, relating its construction to a certain geometric structure, a unitary representation of G in which every irreducible (up to a set of Plancherel measure zero) occurs with multiplicity one.

1. A triplet $(\mathfrak{g}, j, \omega)$ of a completely solvable Lie algebra \mathfrak{g}, a linear operator j on g such that $j^{2}=-1_{9}$ and $\omega \in \mathfrak{g}^{*}$ is termed a normal j-algebra if (i) the Nijenhuis tensor for j vanishes, (ii) $\langle x, y\rangle:=\omega([x, j y])$ defines an inner product on g relative to which j is an orthogonal transformation. Let $G=\exp \mathfrak{g}$, the connected and simply connected Lie group corresponding to g . As is well-known, there is a Siegel domain D of type II on which G acts simply transitively by affine automorphisms. Denote by $S(D)$ the Šilov boundary of D. Then, $S(D)$ is diffeomorphic to a nilpotent (at most 2-step) normal subgroup $N(D)$ of G. Moreover, G is written as a semidirect product $G=N(D) \rtimes G(0)$ with a closed subgroup $G(0)$ of G. We assume throughout this note that D does not reduce to a tube domain. In this case, $N(D)$ is a 2-step nilpotent Lie group and $S(D)$ has a natural CR structure. So, the tangential Cauchy-Riemann operator $\bar{\partial}_{b}$ is defined and we have $\bar{\partial}_{b} \circ \bar{\partial}_{b}=0$.

By Rossi-Vergne [7], the unitary representations of $N(D)$ defined by translations on the square integrable $\bar{\partial}_{b}$ cohomology spaces $H^{q}(q=0,1, \cdots)$ on $S(D)$ contain almost every irreducible of $N(D)$. We will define unitary representations of G on $H^{q}(q=0,1, \cdots)$ such that their restrictions to $N(D)$ coincide with those of [7]. We remark that there is no G-invariant Riemannian metric on $S(D)$, so the usual geometric method is not directly applicable.
2. It is known that g is written as an orthogonal direct sum (relative to $\langle\cdot, \cdot\rangle) \mathfrak{g}=g(0) \oplus g(1 / 2) \oplus g(1)$ with $[g(k), g(m)] \subset \mathfrak{g}(k+m)$, where we understand $\mathfrak{g}(k)=\{0\}$ for $k>1$. Then, $\mathfrak{g}(0)=\operatorname{Lie} G(0)$ and we have $\mathfrak{n}(D):=\operatorname{Lie} N(D)$ $=\mathfrak{g}(1 / 2)+\mathfrak{g}(1)$. We put $V=\mathrm{g}(1 / 2)$. Then V is j-invariant, so $\operatorname{dim} V>0$ is even. We denote by Ξ the set of all $\lambda \in \mathfrak{g}(1)^{*}$ such that the skew-symmetric bilinear form $\lambda([x, y])$ on V is non-degenerate. Ξ is an open dense subset of $g(1)^{*}$. Let J be a Borel mapping with values in real linear operators on V such that for each $\lambda \in E$, (i) $J(\lambda)$ is a complex structure on V satisfying
$\lambda([J(\lambda) x, J(\lambda) y])=\lambda([x, y])$ for all $x, y \in V$, (ii) the quadratic form $\lambda([J(\lambda) v, v])$ on V is negative definite. Through the holomorphic induction, we obtain a measurable (with respect to the Lebesgue measure on $\left.\mathfrak{g}(1)^{*}\right)$ family $\left(U_{\lambda, J(\lambda)}, \widetilde{\mho}_{\lambda, J(\lambda)}\right)_{\lambda \in z}$ of irreducible unitary representations (IURs) of $N(D)$. Here $\mathfrak{F}_{2, J(\lambda)}$ is the Hilbert space of entire functions F on the complex vector space ($V, J(\lambda)$) such that

$$
\int_{V}|F(v)|^{2} \exp \frac{1}{2} \lambda([J(\lambda) v, v]) d \mu(v)<\infty,
$$

where $d \mu(v)$ is the Lebesgue measure on V.
For every $\lambda \in \mathfrak{g}(1)^{*}$, let A_{λ} be the skew-symmetric linear operator on V defined by $\lambda([x, y])=4\left\langle A_{\lambda} x, y\right\rangle(x, y \in V)$. We set $P(\lambda)=\left(\operatorname{det} A_{\lambda}\right)^{1 / 2}$. Evidently, $P(\lambda)>0$ for $\lambda \in \Xi$. We have the following decomposition of $L^{2}(N(D))$, by which the double regular representation of $N(D)$ is decomposed.

Theorem 1. With suitable normalizations of the relevant measures, there is a unitary mapping Φ from $L^{2}(N(D))$ onto $\int_{\bar{z}}^{\oplus} \boldsymbol{B}_{2}\left(\mathscr{F}_{\lambda, J(\lambda)}\right) P(\lambda) d \lambda$ such that for $f \in L^{1}(N(D)) \cap L^{2}(N(D))$

$$
\Phi f(\lambda)=\int_{N(\mathcal{D})} f(n) U_{\lambda, J(\lambda)}(n)^{-1} d n
$$

where $\boldsymbol{B}_{2}\left(\mathscr{F}_{\lambda, \nu(\lambda)}\right)$ is the Hilbert space of the Hilbert-Schmidt operators on $\mathfrak{F}_{\lambda, J(\lambda)}$.
3. Set $V^{ \pm}=V_{c}(j ; \pm i)$. Then, $V^{ \pm}$turn out to be abelian subalgebras of $\mathfrak{n}(D)_{c}$. Hence V^{+}defines a left invariant CR structure on $N(D)$. The CR manifold $N(D)$ thus obtained is CR isomorphic to $S(D)$. Let $\langle\cdot, \cdot\rangle_{C}$ denote the hermitian inner product on $\mathfrak{n}(D)_{c}$ obtained by extending $\langle\cdot, \cdot\rangle$. Then, $V^{ \pm}$are mutually orthogonal relative to $\langle\cdot, \cdot\rangle_{c}$, so that we have an orthogonal decomposition $\mathfrak{n}(D)_{c}=g(1)_{c} \oplus V^{+} \oplus V^{-}$. Hence is defined the $\bar{\partial}_{b}$ Laplacian \square_{b} acting on $C_{c}^{\infty}(N(D)) \otimes \wedge^{q} V^{+}(q=0,1, \cdots)$.
4. To analyze \square_{b}, we pick a specific family of IURs of $N(D)$. Put $(x, y)=\omega([x, j y])-i \omega([x, y])(x, y \in V)$. Then, (\cdot, \cdot) defines a hermitian inner product on the complex vector space $\left(V,\left.j\right|_{V}\right)$. For $\lambda \in \mathfrak{g}(1)^{*}$, let H_{λ} be the selfadjoint operator on $\left(V,\left.j\right|_{V}\right)$ associated with the hermitian quadratic form $\lambda([j z, z]) / 4\left(z \in\left(V,\left.j\right|_{V}\right)\right)$. Let $\left|H_{\lambda}\right|=\left(H_{\lambda}^{2}\right)^{1 / 2}$. It is clear that if $\lambda \in \Xi, H_{\lambda}$ is non-singular. We now define a family of complex linear operators j_{λ} ($\lambda \in \Xi$) on ($V,\left.j\right|_{V}$) by $j_{\lambda}=-i\left|H_{\lambda}\right|^{-1} H_{\lambda}$. Regarding j_{λ} as real linear operators on V, we have a Borel mapping $\lambda \rightarrow j_{2}$ which satisfies (i), (ii) in 2. Therefore we get a measurable family $\left(U_{2}, \mathscr{F}_{2}\right)_{\lambda \in z}$ of IURs of $N(D)$.

Let \square_{b}^{q} be the closure in $L^{2}(N(D)) \otimes \wedge^{q} V^{+}$of the operator \square_{0} on $C_{c}^{\infty}(N(D)) \otimes \wedge^{a} V^{+}$. The closed subspace $H^{q}:=\operatorname{Ker} \square_{b}^{q}$ is called the $q-t h$ square integrable $\bar{\partial}_{b}$ cohomology space. By Theorem 1, we have

$$
L^{2}(N(D)) \simeq \int_{\Xi}^{\oplus} \boldsymbol{B}_{2}\left(\mathfrak{F}_{2}\right) P(\lambda) d \lambda
$$

and by [1, Proposition 11, p. 174] this isomorphism extends to the isomorphism

$$
\Phi_{q}: L^{2}(N(D)) \otimes \wedge^{q} V^{+} \leftrightharpoons \int_{B}^{\oplus} \boldsymbol{B}_{2}\left(\mathfrak{F}_{\lambda}\right) \otimes V^{+, q}(\lambda) P(\lambda) d \lambda
$$

where $V^{+, q}(\lambda)$ is the constant field of Hilbert spaces over Ξ defined by $V^{+, q}(\lambda)=\bigwedge^{q} V^{+}$. We call the unitary mapping Φ_{q} the Fourier transformation.

For each $q=0,1, \cdots$, let Ξ_{q} be the set of all $\lambda \in \Xi$ such that the selfadjoint operator H_{2} has q negative eigenvalues. E_{q} is an open (possibly empty) subset of $g(1)^{*}$. We denote by A_{2} the closed subspace of all $T \in$ $\boldsymbol{B}_{2}\left(\mathscr{F}_{2}\right)$ such that Range $T \subset C 1$, where $1 \in \mathfrak{F}_{2}$ is the constant function with value 1. On the other hand, noting that j_{λ} leaves V^{+}invariant, we let $V^{+}\left(j_{\lambda} ; i\right)$ be the i-eigenspace of j_{λ} in V^{+}and put $\delta(\lambda)=\operatorname{dim}_{C} V^{+}\left(j_{\lambda} ; i\right)$. Set $\mathcal{B}(\lambda)=\bigwedge^{\delta(\lambda)} V^{+}\left(j_{\lambda} ; i\right)$. Then, if $\lambda \in \Xi_{q}$, we have $\delta(\lambda)=q$, so that $\mathcal{B}(\lambda) \subset \wedge^{q} V^{+}$. It is clear that $\lambda \rightarrow 3(\lambda)$ is a measurable field of one dimensional Hilbert spaces.

Theorem 2. The Fourier transformation Φ_{q} induces a unitary mapping from H^{q} onto

$$
\mathcal{F}^{q}:=\int_{s_{q}}^{\oplus} A_{\lambda} \otimes 3(\lambda) P(\lambda) d \lambda .
$$

Corollary (cf. [7]). $\quad H^{q}=\{0\}$ if and only if $\Xi_{q}=\varnothing$.
5. Now it is easy to see that $A_{2} \simeq \mathscr{F}_{-2}$ canonically as Hilbert spaces, so that we have

$$
\mathscr{H}^{q} \simeq \boldsymbol{H}^{q}:=\int_{s_{n-q}}^{\oplus} \mathfrak{F}_{\lambda} P(\lambda) d \lambda,
$$

where $2 n=\operatorname{dim} V$. We will define a unitary representation of G on \boldsymbol{H}^{q} (hence on H^{q}). We note here that $G(0)$ acts on $g(1)^{*}$ with 2^{l} open orbits $O_{\eta}\left(\eta \in \mathfrak{X}:=\{-1,1\}^{l}\right)$, where l is the rank of the normal j-algebra (\mathfrak{g}, j, ω) (cf. [6, Proposition 3.3.1]). For each $\eta \in \mathfrak{X}$ we can construct a continuous mapping $J(\cdot, \eta)$ defined on $G(0)$ such that for any $(g, \eta) \in G(0) \times \mathfrak{X}, J(g, \eta)$ satisfies, in addition to (i) and (ii) in 2 with $\lambda=g \cdot \lambda_{\eta}$ ($\lambda_{\eta} \in O_{\eta}$ chosen suitably), the following relation :
(1) $\quad\left(\operatorname{Ad}_{V} g_{1}\right) \circ J\left(g_{2}, \eta\right)=J\left(g_{1} g_{2}, \eta\right) \circ\left(\operatorname{Ad}_{V} g_{1}\right) \quad$ for all $g_{1}, g_{2} \in G(0)$.

Thus we get another family $\left(U_{g, \eta}, \mathfrak{\mho}_{g, \eta}\right)(g \in G(0), \eta \in \mathfrak{X})$ of IURs of $N(D)$, which is measurable with respect to the left Haar measure on $G(0)$ for every $\eta \in \mathfrak{X}$.

Since $U_{g, \eta}$ is unitarily equivalent to $U_{\lambda}\left(\lambda=g \cdot \lambda_{\eta}\right)$ defined in 4 , there is a unitary intertwining operator $g(\lambda): \mathfrak{F}_{\lambda} \rightarrow \mathfrak{F}_{g, \eta} . \quad \mathcal{g}(\lambda)$ is given explicitly by an integral operator (cf. [3]). On the other hand, let

$$
\mathcal{R}\left(g_{0}\right) F(v)=\left[\operatorname{det} \operatorname{Ad}_{V} g_{0}\right]^{-1 / 2} F\left(g_{0}^{-1} \cdot v\right) \quad\left(g_{0} \in G(0)\right)
$$

Then, owing to (1), $\mathcal{R}\left(g_{0}\right)$ is a unitary mapping from $\mathfrak{F}_{g, \eta}$ onto $\mathfrak{F}_{g_{0} g, \eta}$ for arbitrary $g_{0}, g \in G(0)$ and $\eta \in \mathfrak{X}$. We put

$$
\mathcal{R}_{0}\left(g_{0} ; \lambda\right)=\mathscr{F}\left(g_{0} \cdot \lambda\right)^{-1} \mathcal{R}\left(g_{0}\right) \mathscr{g}(\lambda) .
$$

Then, it is easy to see that $\mathcal{R}_{0}(g ; \lambda)$ is a unitary mapping from \mathfrak{F}_{2} onto $\mathfrak{F}_{g \cdot 2}$ and satisfies $\mathcal{R}_{0}\left(g_{1} g_{2} ; \lambda\right)=\mathcal{R}_{0}\left(g_{1} ; g_{2} \cdot \lambda\right) \mathcal{R}_{0}\left(g_{2} ; \lambda\right)$. Since we have an IUR U_{λ} of $N(D)$ on \mathfrak{F}_{2}, we can thus define unitary representations τ_{q} of $G=N(D)$ $\rtimes S(0)$ on H^{q} (hence on $\left.H^{q}\right)(q=0,1, \cdots)$.

Theorem 3. Let σ_{G} be the Kirillov-Bernat mapping $\mathfrak{g}^{*} / G \rightarrow \hat{G}$. Then, denoting by $\left[\tau_{q}\right]$ the equivalence class of τ_{q}, one has $\left[\tau_{q}\right]=\sum_{\eta \in \mathfrak{X}_{n-q}}^{~_{G}}\left(G \cdot \lambda_{\eta}\right)$, where $\mathfrak{X}_{n-q}=\left\{\eta \in \mathfrak{X} ; O_{\eta} \subset \boldsymbol{\Xi}_{n-q}\right\}$.

Remark. τ_{0} is the quasi-regular representation of G on the square integrable CR functions on $N(D)$.

It can be shown that $\left\{G \cdot \lambda_{\eta} ; \eta \in \mathfrak{X}\right\}$ exhausts all open coadjoint orbits in g^{*}. Combining Theorem 3 with [2, p. 132], we get

Theorem 4. $\sum_{0 \leq q \leq n}^{\oplus} \tau_{q}$ contains all (except for a set of Plancherel measure zero) irreducible unitary representations of G exactly once.

Finally we remark that the IUR belonging to each $\sigma_{G}\left(G \cdot \lambda_{\eta}\right)$ is square integrable by [2, Théorème 5.3.4].

The details of this note will appear elsewhere.

References

[1] J. Dixmier: Von Neumann Algebras. North-Holland, Amsterdam (1981).
[2] M. Duflo et M. Rais: Ann. Sci. Ec. Norm. Sup., 9, 107-144 (1976).
[3] B. Magneron: J. Funct. Anal., 59, 90-122 (1984).
[4] T. Nomura: Proc. Japan Acad., 61A, 133-136 (1985).
[5] I. I. Pyatetskii-Shapiro: Automorphic Functions and the Geometry of Classical Domains. Gordon and Breach, New York (1969).
[6] H. Rossi et M. Vergne: Ann. Sci. Ec. Norm. Sup., 9, 31-80 (1976).
[7] -: Pacific J. Math., 65, 83-110 (1976).

