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94. Representations of a Solvable Lie Group
on 0, Cohomology Spaces

By Takaaki NOMURA
Department of Mathematics, Kyoto University

(Communicated by Kosaku Yosipa, M. J. A., Nov. 12, 1986)

Let (g, 7, ) be a normal j-algebra introduced by Pyatetskii-Shapiro [5]
(see below). We denote by G the connected and simply connected Lie
group with Lie algebra g. The aim of this note is to give, relating its
construction to a certain geometric structure, a unitary representation of
G in which every irreducible (up to a set of Plancherel measure zero) occurs
with multiplicity one.

1. A triplet (g, 7, ) of a completely solvable Lie algebra g, a linear
operator j on g such that 7*=—1 and o € g* is termed a normal j-algebra
if (i) the Nijenhuis tensor for j vanishes, (ii) <z, ¥) :=w([®, jy]) defines an
inner product on g relative to which j is an orthogonal transformation.
Let G=exp g, the connected and simply connected Lie group correspond-
ing to g. As is well-known, there is a Siegel domain D of type II on which
G acts simply transitively by affine automorphisms. Denote by S(D) the
Silov boundary of D. Then, S(D) is diffeomorphic to a nilpotent (at most
2-step) normal subgroup N(D) of G. Moreover, G is written as a semi-
direct product G=N(D)xG(0) with a closed subgroup G(0) of G. We
assume throughout this note that D does not reduce to a tube domain. In
this case, N(D) is a 2-step nilpotent Lie group and S(D) has a natural CR
structure. So, the tangential Cauchy-Riemann operator 9, is defined and
we have 9, 00,=0.

By Rossi-Vergne [7], the unitary representations of N(D) defined by
translations on the square integrable d, cohomology spaces H? (¢=0,1, - - )
on S(D) contain almost every irreducible of N(D). We will define unitary
representations of G on H? (¢=0,1, - - -) such that their restrictions to N(D)
coincide with those of [7]. We remark that there is no G-invariant
Riemannian metric on S(D), so the usual geometric method is not directly
applicable.

2. It is known that g is written as an orthogonal direct sum (relative
to (-, -») =0(0)Dg(1/2)Dg(1) with [g(k), a(m)]Cg(k+m), where we under-
stand g(k)={0} for k>1. Then, g(0)=Lie G(0) and we have n(D) :=Lie N(D)
=g(1/2)+g(1). We put V=g(1/2). Then V is j-invariant, so dim V>0 is
even. We denote by 5 the set of all 1€ g(1)* such that the skew-symmetric
bilinear form i([z, ¥]) on V is non-degenerate. 5 is an open dense subset
of g(1)*. Let J be a Borel mapping with values in real linear operators
on V such that for each 1€ &, (i) J(2) is a complex structure on V satisfying
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ARz, J(DYD) =[x, y]) for all x,y e V, (ii) the quadratic form A([J()v, v])
on V is negative definite. Through the holomorphic induction, we obtain
a measurable (with respect to the Lebesgue measure on g(1)*) family
U, r0s Brvw)ies of irreducible unitary representations (IURs) of N(D).
Here §,,,(, is the Hilbert space of entire functions F' on the complex vector
space (V, J(2)) such that

[ IF@rexp —;—zaJ(z)v, V) du(v) < oo,

where du(v) is the Lebesgue measure on V.

For every 1¢ g(1)*, let 4, be the skew-symmetric linear operator on V
defined by A([x, y1) =4<{Ax, ¥> (x,y € V). We set P(2)=(det 4,)'*. Evidently,
P()>0 for 2 £. We have the following decomposition of LXN(D)), by
which the double regular representation of N(D) is decomposed.

Theorem 1. With suitable normalizations of the relevant measures,

there is a wunitary mapping @ from L*N(D)) onto J@ By(F..:)P(A)dA
such that for fe LY(N(D)) N LXN(D))
0= F@U, 0 dn,
N(D)

where BSF,,,w) s the Hilbert space of the Hilbert-Schmidt operators on
58:1,](1)'

3. Set V==V.(j; £+4). Then, V* turn out to be abelian subalgebras
of n1(D),. Hence V* defines a left invariant CR structure on N(D). The
CR manifold N(D) thus obtained is CR isomorphic to S(D). Let (-, -),
denote the hermitian inner product on n(D), obtained by extending (-, ->.
Then, V* are mutually orthogonal relative to (-, ->; so that we have an
orthogonal decomposition n(D),=g(1);®V*®V". Hence is defined the 9,
Laplacian [], acting on C;(N(D)@AV* (¢=0,1, - --).

4. To analyze [],, we pick a specific family of IURs of N(D). Put
@, ) =w(z, jy]) —to([x, y]) (x,y € V). Then, (-, -) defines a hermitian inner
product on the complex vector space (V,j|,). For i1eg(l)*, let H, be the
selfadjoint operator on (V,j|,) associated with the hermitian quadratic
form A([5z,21)/4 (ze (V,j|)). Let |H,|=(H?»"*. 1t is clear thatif 1¢ 5, H,
is non-singular. We now define a family of complex linear operators j,
(Ae &) on (V,j|y) by 7,=—1¢|H,|"* H,. Regarding j, as real linear operators
on V, we have a Borel mapping 1—j, which satisfies (i), (ii) in 2. There-
fore we get a measurable family (U,, §,);cz of IURs of N(D).

Let [J? be the closure in LAN(D)®/A\*V* of the operator [], on
Co(ND)QNV*. The closed subspace H?:=Ker[]¢ is called the g-th
square integrable 3, cohomology space. By Theorem 1, we have

L= BEIPD

and by [1, Proposition 11, p. 174] this isomorphism extends to the iso-
morphism
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0,: LINDYRAY*S | BEISV PO,

where V*9(2) is the constant field of Hilbert spaces over 5 defined by
V4= /A\V*. Wecall the unitary mapping @, the Fourier transformation.

For each ¢=0,1, - - -, let 5, be the set of all ¢ & such that the self-
adjoint operator H, has q negative eigenvalues. 5, is an open (possibly
empty) subset of g(1)*. We denote by A, the closed subspace of all T e
B,(%,) such that Range TCC1, where 1€, is the constant function with
value 1. On the other hand, noting that j, leaves V* invariant, we let
V*(j,; ©) be the i-eigenspace of j, in V* and put () =dim; V*(j,;1). Set
BA=A*V*(,;19). Then, if 2¢ &, we have (1)=q, so that JQ)c \V".
It is clear that 2—3(2) is a measurable field of one dimensional Hilbert
spaces.

Theorem 2. The Fourier transformation @, induces a unitary map-
ping from H? onto

He = f: A®3NP(A)dA.

Corollary (cf. [T]). H*={0} if and only if 5,=.

5. Now it is easy to see that 4,~%_, canonically as Hilbert spaces,
so that we have

S~ Ho :.—_ﬁ X, P()dA,

n=q

where 2n=dim V. We will define a unitary representation of G on H*
(hence on HY. We note here that G(0) acts on g(1)* with 2' open orbits
0, (peX:={—1,1}), where ! is the rank of the normal j-algebra (g, j, »)
(cf. [6, Proposition 3.3.1]). For each ne X we can construct a continuous
mapping J(-,7) defined on G(0) such that for any (g,7) e G(0O) XX, J(g9,7)
satisfies, in addition to (i) and (ii) in 2 with 2=g-2, (1, € O, chosen suitably),
the following relation :
(1) (Ady9)od(9e D =J(9:9 1) (Ady g)  for all g, g,€ G(0).
Thus we get another family (U,,,, ¥,,,) (9 € G(0),p€ X) of IURs of N(D),
which is measurable with respect to the left Haar measure on G(0) for
every ne X.

Since U, is unitarily equivalent to U, (A1=g-2,) defined in 4, there is
a unitary intertwining operator 4(2):&—%,,,» S is given explicitly
by an integral operator (cf. [3]). On the other hand, let

RGIF(v)=I[det Ad, 9,1 ""*F(95'-v)  (9,€ G(0)).
Then, owing to (1), R(g,) is a unitary mapping from {, , onto F, ,,, for
arbitrary g,, g € G(0) and e X. We put
Ry(9o; )=H9(9," 2)“92(go)£(2).

Then, it is easy to see that R(g; 2) is a unitary mapping from §, onto F, .,
and satisfies Ry(9:9:; )=Ro(91; 9:* D R(9:; 2). Since we have an IUR U,

of N(D) on ,, we can thus define unitary representations z, of G=N(D)
xS(0) on H? (hence on H?) (¢=0,1, - --).
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Theorem 3. Let g, be the Kirillov-Bernat mapping g*/G—G. Then,
denoting by [z,] the equivalence class of z,, one has [t ]=> %, ,04(G-2,),
where X,_,={neX; 0,C&,_.}.

Remark. 7, is the quasi-regular representation of G on the square
integrable CR functions on N(D).

It can be shown that {G-2,; e X} exhausts all open coadjoint orbits
in g*. Combining Theorem 3 with [2, p. 182], we get

Theorem 4. > & ,..7, contains all (except for a set of Plancherel
measure zero) irreducible unitary representations of G exactly once.

Finally we remark that the IUR belonging to each ¢,(G-2,) is square
integrable by [2, Théoreme 5.3.4].

The details of this note will appear elsewhere.
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