
No. 9] Proc. Japan Acad., 62, Ser. A (1986) 331

Representations of a Solvable Lie Group
on Cohomology Spaces

By Takaaki NOMURA
Department of Mathematics, Kyoto University

(Communicated by KSsaku YOSIDA, M.J.A., Nov. 12, 1986)

Let (, ], o) be a normal ]-algebra introduced by Pyatetskii-Shapiro [5]
(see below). We denote by G the connected and simply connected Lie
group with Lie algebra . The aim of this note is to give, relating its
construction to a certain geometric structure, a unitary representation of
G in which every irreducible (up to a set o Plancherel measure zero) occurs
with multiplicity one.

1o A triplet (g, ], w)of a completely solvable Lie algebra g, a linear
operator ] on such that ]2=_1 and e * is termed a normal ]-algebra
if (i) the Nijenhuis tensor or ] vanishes, (ii) (x, y} "=w([x, ]y]) defines an
inner product on relative to which ] is an orthogonal transformation.
Let G=exp , the connected and simply connected Lie group correspond-
ing to . As is well-known, there is a Siegel domain D o type II on which
G acts simply transitively by affine automorphisms. Denote by S(D) the
Silov boundary of D. Then, S(D) is diffeomorphic to a nilpotent (at most
2-step) normal subgroup N(D) of G. Moreover, G is written as a semi-
direct product G=N(D)>G(O) with a closed subgroup G(0) o G. We
assume throughout this note that D does not reduce to a tube domain. In
this case, N(D) is a 2-step nilpotent Lie group and S(D) has a natural CR
structure. So, the tangential Cauchy-Riemann operator is defined and
we have b b--0.

By Rossi-Vergne [7], the unitary representations of N(D) defined by
translations on the square integrable cohomology spaces H (q =0, 1, ...)
on S(D) contain almost every irreducible ot N(D). We will define unitary

representations of G on H (q =0, 1, ...) such that their restrictions to N(D)
coincide with those of [7]. We remark that there is no G-invariant
Riemannian metric on S(D), so the usual geometric method is not directly
applicable.

2. It is known that fi is written as an orthogonal direct sum (relative
to (., .})fi=g(0)q(1/2)(R)(1)with [g(k),(m)]c(k+m), where we under-
stand (k) {0} for k 1. Then, fi(0) Lie G(0) and we have (D) "= Lie N(D)
=(1/2)+(1). We put V=g(1/2). Then V is ]-invariant, so dim V0 is

even. We denote by the set of all 2 e (1)* such that the skew-symmetric
bilinear form 2([x, y]) on V is non-degenerate. is an open dense subset
of (1)*. Let J be a Borel mapping with values in real linear operators
on V such that or each 2 e , (i) J(2) is a complex structure on V satisfying
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2([J(2)x, J()y])= 2([x, y]) for all x, y e V, (ii) the quadratic form ([J()v, v])
on V is negative definite. Through the holomorphic induction, we obtain
a measurable (with respect to the Lebesgue measure on g(1)*) family
(U,j(),,j())e-of irreducible unitary representations (IURs)of N(D)..
Here ,j() is the Hilbert space of entire functions F on the complex vector
space (V, J(D) such that

IF(v)I exp -([J()v, v])dp(v)<,
where did(v) is the Lebesgue measure on V.

For every (1)*, let A be the skew-symmetric linear operator on V
defined by ([x, y])--4(Ax, y) (x, y e V). We set P() =(det A)/. Evidently,
P()O for e . We have the ollowing decomposition of L(N(D)), by
which the double regular representation of N(D) is decomposed.

Theorem I. With suitable normalizations of the relevant measures,

there is a unitary mapping from L(N(D)) onto [ B(,j())P(])d

such that for f L(N(D)) L(N(D))= f(n)U,()(n)-dn,f()

where B(,()) is the Hilbert space of the Hilbert-Schmidt operators on
,().

:. Set V =Vc(]; +_i). Then, V turn out to be abelian subalgebras
of (D)c. Hence V defines a left invariant CR structure on N(D). The
CR manifold N(D) thus obtained is CR isomorphic to S(D). Let (.,.
denote the hermitian inner product on u(D)c obtained by extending (.,.
Then, V are mutually orthogonal relative to (.,.}c, so that we have an
orthogonal decomposition a(D)c=(1)c(R)V/(R)V-. Hence is defined the
Laplacian [ acting on C(N(D))(R)/ qV (q=0, 1,...).

4. To analyze , we pick a specific amily of IURs of N(D). Put
(x, y)=o([x, ]y])-i(o([x, y])(x, y e V). Then, (.,.) defines a hermitian inner
product on the complex vector space (V, ]1,). For e (1)*, let H be the
selfadjoint operator on (V,]I,) associated with the hermitian quadratic
orm ([]z, z])/4 (z e (V, ]1)). Let [HI=(H)/. It is clear that if
is non-singular.Z We now define a family of complex linear operators
(2 e ) on (V, ]i) by ]=--ilHl- H. Regarding ] as real linear operators
on V, we have a Borel mapping 2--] which satisfies (i), (ii) in 2. There-
fore we get a measurable amily (U, )es of IURs of N(D).

Let [-]g be the closure in L(N(D))(R)/qV of the operator on
C(N(D))(R)/qV+. The closed subspace H :=Ker[- is called the q-th
square integrable cohomology space. By Theorem 1, we have

L(N(D)) : B()P()d

and by [1, Proposition 11, p. 174] this isomorphism extends to the iso-
morphism
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where V+,() is the constant field of Hilbert spaces over E defined by
V+’() AV+. We call the unitary mappingq the Fourier transformation.

For each q-0,1,..., let be the set of all R e such that the self-
adjoint operator H, has q negative eigenvalues. is an open (possibly
empty) subset of (1)*. We denote by A the closed subspace of all T e
B(,) such that Range TC1, where 1 e , is the constant function with
value 1. On the other hand, noting that ] leaves V invariant, we let
V+(], i) be the i-eigenspace of ], in V+ and put/(R)-dime V+(], i). Set
() AV+(] i). Then, if e , we have/() q, so that 3()a AV+.
It is clear that -(2) is a measurable field of one dimensional Hilbert
spaces.

Theorem 2. The Fourier transformation q induces a unitary map-
ping from H onto

N’= A(R)g()P()g.

Corollar7 (el. [7]). H={0} if and only if
5. Now it is easy to see that A_ canonically as Hilbert spaces,

so that we have

--q

where 2n--dim V. We will define a unitary representation of G on H
(hence on H). We note here that G(0) acts on (1)* with 2 open orbits

0 (e {-1,1}*), where is the rank of the normal ]-algebra (, ], o)
(cf. [6, Proposition 3.3.1]). For each e we can construct a continuous
mapping J(.,
satisfies, in addition to (i) and (ii) in 2 with -g. ( e O chosen suitably),
the following relation:
( 1 ) (Adr g) J(g, )--J(gg., ) (Adr g,) for all g, g e G(0).
Thus we get another family (Uq,,, q,,)(g e G(0), e ) of IURs of N(D),
which is measurable with respect to the left Haar measure on G(0) for
every

Since Uq,, is unitarily equivalent to U, (2=g-2,) defined in 4, there is
a unitary intertwining operator ():--..,. c(2) is given explicitly
by an integral operator (cf. [3]). On the other hand, let

R(go)F(v)-[det Ad go]-/F(g;. v) (go e G(0)).
Then, owing to (1), (g0) is a unitary mapping from q,, onto qoq., for
arbitrary go, g e G(0) and e . We put

-qo(go; )-vq(go. )-’-q(go)cg().
Then, it is easy to see that Ro(g ) is a unitary mapping from , onto q.,
and satisfies ..o(gg. ,t) o(g g" )/o(g ). Since we have an IUR U,
of N(D)on , we can thus define unitary representations q of G=N(D)
) S(O) on H (hence on Hq) (q=O, 1,...).
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Theorem 3. Let a be the Kirillov-Bernat mapping */G--+. Then,
denoting by [%] the equivalence class of rq, one has [%]
where _q { e O_q}.

Remark. r0 is the quasi-regular representation of G on the square
integrable CR functions on N(D).

It can be shown that {G.2"; ]e 3} exhausts all open coadjoint orbits
in *. Combining Theorem 3 with [2, p. 132], we get

Theorem 4. oq_nrq contains all (except for a set of Plancherel
measure zero) irreducible unitary representations of G exactly once.

Finally we remark that the IUR belonging to each ae(G. ) is square
integrable by [2, Thorme 5.3.4].

The details of this note will appear elsewhere.
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