94. Representations of a Solvable Lie Group on $\bar{\partial}_b$ Cohomology Spaces

By Takaaki NOMURA Department of Mathematics, Kyoto University (Communicated by Kôsaku Yosida, M. J. A., Nov. 12, 1986)

Let (g, j, ω) be a normal *j*-algebra introduced by Pyatetskii-Shapiro [5] (see below). We denote by *G* the connected and simply connected Lie group with Lie algebra g. The aim of this note is to give, relating its construction to a certain geometric structure, a unitary representation of *G* in which every irreducible (up to a set of Plancherel measure zero) occurs with multiplicity one.

1. A triplet (g, j, ω) of a completely solvable Lie algebra g, a linear operator j on g such that $j^2 = -1_{\mathfrak{g}}$ and $\omega \in \mathfrak{g}^*$ is termed a normal j-algebra if (i) the Nijenhuis tensor for j vanishes, (ii) $\langle x, y \rangle := \omega([x, jy])$ defines an inner product on g relative to which j is an orthogonal transformation. Let $G = \exp \mathfrak{g}$, the connected and simply connected Lie group corresponding to g. As is well-known, there is a Siegel domain D of type II on which G acts simply transitively by affine automorphisms. Denote by S(D) the Šilov boundary of D. Then, S(D) is diffeomorphic to a nilpotent (at most 2-step) normal subgroup N(D) of G. Moreover, G is written as a semidirect product $G=N(D) \rtimes G(0)$ with a closed subgroup G(0) of G. We assume throughout this note that D does not reduce to a tube domain. In this case, N(D) is a 2-step nilpotent Lie group and S(D) has a natural CR structure. So, the tangential Cauchy-Riemann operator $\bar{\partial}_b$ is defined and we have $\bar{\partial}_b \circ \bar{\partial}_b = 0$.

By Rossi-Vergne [7], the unitary representations of N(D) defined by translations on the square integrable $\bar{\partial}_b$ cohomology spaces H^q $(q=0,1,\cdots)$ on S(D) contain almost every irreducible of N(D). We will define unitary representations of G on H^q $(q=0,1,\cdots)$ such that their restrictions to N(D)coincide with those of [7]. We remark that there is no G-invariant Riemannian metric on S(D), so the usual geometric method is not directly applicable.

2. It is known that g is written as an orthogonal direct sum (relative to $\langle \cdot, \cdot \rangle$) $g=g(0)\oplus g(1/2)\oplus g(1)$ with $[g(k), g(m)] \subset g(k+m)$, where we understand $g(k)=\{0\}$ for k>1. Then, g(0)=Lie G(0) and we have n(D):=Lie N(D)=g(1/2)+g(1). We put V=g(1/2). Then V is *j*-invariant, so dim V>0 is even. We denote by Ξ the set of all $\lambda \in g(1)^*$ such that the skew-symmetric bilinear form $\lambda([x, y])$ on V is non-degenerate. Ξ is an open dense subset of $g(1)^*$. Let J be a Borel mapping with values in real linear operators on V such that for each $\lambda \in \Xi$, (i) $J(\lambda)$ is a complex structure on V satisfying

 $\lambda([J(\lambda)x, J(\lambda)y]) = \lambda([x, y])$ for all $x, y \in V$, (ii) the quadratic form $\lambda([J(\lambda)v, v])$ on V is negative definite. Through the holomorphic induction, we obtain a measurable (with respect to the Lebesgue measure on $g(1)^*$) family $(U_{\lambda,J(\lambda)}, \mathfrak{F}_{\lambda,J(\lambda)})_{\lambda \in \mathcal{Z}}$ of irreducible unitary representations (IURs) of N(D). Here $\mathfrak{F}_{\lambda,J(\lambda)}$ is the Hilbert space of entire functions F on the complex vector space $(V, J(\lambda))$ such that

$$\int_{V}|F(v)|^{2}\exp\frac{1}{2}\lambda([J(\lambda)v,v])d\mu(v)<\infty,$$

where $d\mu(v)$ is the Lebesgue measure on V.

For every $\lambda \in \mathfrak{g}(1)^*$, let A_{λ} be the skew-symmetric linear operator on V defined by $\lambda([x, y]) = 4\langle A_{\lambda}x, y \rangle (x, y \in V)$. We set $P(\lambda) = (\det A_{\lambda})^{1/2}$. Evidently, $P(\lambda) > 0$ for $\lambda \in \Xi$. We have the following decomposition of $L^2(N(D))$, by which the double regular representation of N(D) is decomposed.

Theorem 1. With suitable normalizations of the relevant measures, there is a unitary mapping Φ from $L^2(N(D))$ onto $\int_{\varepsilon}^{\oplus} B_2(\mathfrak{F}_{\lambda,J(\lambda)})P(\lambda)d\lambda$ such that for $f \in L^1(N(D)) \cap L^2(N(D))$

$$\Phi f(\lambda) = \int_{N(D)} f(n) U_{\lambda, J(\lambda)}(n)^{-1} dn,$$

where $B_2(\mathfrak{F}_{\lambda,J(\lambda)})$ is the Hilbert space of the Hilbert-Schmidt operators on $\mathfrak{F}_{\lambda,J(\lambda)}$.

3. Set $V^{\pm} = V_c(j; \pm i)$. Then, V^{\pm} turn out to be abelian subalgebras of $\mathfrak{n}(D)_c$. Hence V^+ defines a left invariant CR structure on N(D). The CR manifold N(D) thus obtained is CR isomorphic to S(D). Let $\langle \cdot, \cdot \rangle_c$ denote the hermitian inner product on $\mathfrak{n}(D)_c$ obtained by extending $\langle \cdot, \cdot \rangle_c$. Then, V^{\pm} are mutually orthogonal relative to $\langle \cdot, \cdot \rangle_c$, so that we have an orthogonal decomposition $\mathfrak{n}(D)_c = \mathfrak{g}(1)_c \oplus V^+ \oplus V^-$. Hence is defined the $\bar{\partial}_b$ Laplacian \Box_b acting on $C_c^{\infty}(N(D)) \otimes \bigwedge^q V^+ (q=0,1,\cdots)$.

4. To analyze \square_b , we pick a specific family of IURs of N(D). Put $(x, y) = \omega([x, jy]) - i\omega([x, y]) (x, y \in V)$. Then, (\cdot, \cdot) defines a hermitian inner product on the complex vector space $(V, j|_V)$. For $\lambda \in \mathfrak{g}(1)^*$, let H_{λ} be the selfadjoint operator on $(V, j|_V)$ associated with the hermitian quadratic form $\lambda([jz, z])/4$ $(z \in (V, j|_V))$. Let $|H_{\lambda}| = (H_{\lambda}^2)^{1/2}$. It is clear that if $\lambda \in \mathcal{Z}, H_{\lambda}$ is non-singular. We now define a family of complex linear operators j_{λ} $(\lambda \in \mathcal{Z})$ on $(V, j|_V)$ by $j_{\lambda} = -i|H_{\lambda}|^{-1}H_{\lambda}$. Regarding j_{λ} as real linear operators on V, we have a Borel mapping $\lambda \rightarrow j_{\lambda}$ which satisfies (i), (ii) in 2. Therefore we get a measurable family $(U_{\lambda}, \mathfrak{F}_{\lambda})_{\lambda \in \mathcal{S}}$ of IURs of N(D).

Let \square_b^q be the closure in $L^2(N(D)) \otimes \bigwedge^q V^+$ of the operator \square_b on $C_c^{\infty}(N(D)) \otimes \bigwedge^q V^+$. The closed subspace $H^q := \text{Ker} \square_b^q$ is called the *q*-th square integrable $\bar{\partial}_b$ cohomology space. By Theorem 1, we have

$$L^{2}(N(D)) \simeq \int_{\mathcal{B}}^{\oplus} B_{2}(\mathfrak{F}_{\lambda})P(\lambda)d\lambda$$

and by [1, Proposition 11, p. 174] this isomorphism extends to the isomorphism

$$\Phi_q: L^2(N(D)) \otimes \bigwedge^q V^* \cong \int_{\mathfrak{g}}^{\oplus} B_2(\mathfrak{F}_{\lambda}) \otimes V^{*,q}(\lambda) P(\lambda) d\lambda$$

where $V^{+,q}(\lambda)$ is the constant field of Hilbert spaces over Ξ defined by $V^{+,q}(\lambda) = \bigwedge^{q} V^{+}$. We call the unitary mapping Φ_{q} the Fourier transformation.

For each $q=0, 1, \cdots$, let \mathbb{Z}_q be the set of all $\lambda \in \mathbb{Z}$ such that the selfadjoint operator H_{λ} has q negative eigenvalues. \mathbb{Z}_q is an open (possibly empty) subset of $g(1)^*$. We denote by A_{λ} the closed subspace of all $T \in \mathbb{B}_2(\mathbb{F}_{\lambda})$ such that Range $T \subset \mathbb{C}1$, where $1 \in \mathbb{F}_{\lambda}$ is the constant function with value 1. On the other hand, noting that j_{λ} leaves V^+ invariant, we let $V^+(j_{\lambda}; i)$ be the *i*-eigenspace of j_{λ} in V^+ and put $\delta(\lambda) = \dim_c V^+(j_{\lambda}; i)$. Set $\Im(\lambda) = \bigwedge^{\delta(\lambda)} V^+(j_{\lambda}; i)$. Then, if $\lambda \in \mathbb{Z}_q$, we have $\delta(\lambda) = q$, so that $\Im(\lambda) \subset \bigwedge^q V^+$. It is clear that $\lambda \to \Im(\lambda)$ is a measurable field of one dimensional Hilbert spaces.

Theorem 2. The Fourier transformation Φ_q induces a unitary mapping from H^q onto

$$\mathcal{H}^{q} := \int_{\mathbb{F}_{q}}^{\oplus} A_{\lambda} \otimes \mathfrak{Z}(\lambda) P(\lambda) d\lambda.$$

Corollary (cf. [7]). $H^q = \{0\}$ if and only if $\Xi_q = \emptyset$.

5. Now it is easy to see that $A_{\lambda} \simeq \widetilde{v}_{-\lambda}$ canonically as Hilbert spaces, so that we have

$$\mathcal{H}^{q} \simeq H^{q} := \int_{\mathbb{Z}_{n-q}}^{\oplus} \mathfrak{F}_{\lambda} P(\lambda) d\lambda,$$

where $2n = \dim V$. We will define a unitary representation of G on H^q (hence on H^q). We note here that G(0) acts on $g(1)^*$ with 2^l open orbits $O_{\eta} (\eta \in \mathfrak{X} := \{-1, 1\}^l)$, where l is the rank of the normal *j*-algebra (g, j, ω) (cf. [6, Proposition 3.3.1]). For each $\eta \in \mathfrak{X}$ we can construct a continuous mapping $J(\cdot, \eta)$ defined on G(0) such that for any $(g, \eta) \in G(0) \times \mathfrak{X}$, $J(g, \eta)$ satisfies, in addition to (i) and (ii) in 2 with $\lambda = g \cdot \lambda_{\eta} (\lambda_{\eta} \in O_{\eta}$ chosen suitably), the following relation :

(1) $(\operatorname{Ad}_{v} g_{1}) \circ J(g_{2}, \eta) = J(g_{1}g_{2}, \eta) \circ (\operatorname{Ad}_{v} g_{1})$ for all $g_{1}, g_{2} \in G(0)$. Thus we get another family $(U_{g,\eta}, \mathfrak{F}_{g,\eta})$ $(g \in G(0), \eta \in \mathfrak{X})$ of IURs of N(D), which is measurable with respect to the left Haar measure on G(0) for every $\eta \in \mathfrak{X}$.

Since $U_{q,\eta}$ is unitarily equivalent to $U_{\lambda} (\lambda = g \cdot \lambda_{\eta})$ defined in 4, there is a unitary intertwining operator $\mathcal{J}(\lambda) : \mathfrak{F}_{\lambda} \to \mathfrak{F}_{q,\eta}$. $\mathcal{J}(\lambda)$ is given explicitly by an integral operator (cf. [3]). On the other hand, let

 $\mathscr{R}(g_0)F(v) = [\det \operatorname{Ad}_V g_0]^{-1/2}F(g_0^{-1} \cdot v) \qquad (g_0 \in G(0)).$

Then, owing to (1), $\mathcal{R}(g_0)$ is a unitary mapping from $\mathfrak{F}_{g,\eta}$ onto $\mathfrak{F}_{g_0g,\eta}$ for arbitrary $g_0, g \in G(0)$ and $\eta \in \mathfrak{X}$. We put

$$\mathcal{R}_0(g_0; \lambda) = \mathcal{J}(g_0 \cdot \lambda)^{-1} \mathcal{R}(g_0) \mathcal{J}(\lambda).$$

Then, it is easy to see that $\mathcal{R}_0(g; \lambda)$ is a unitary mapping from \mathfrak{F}_{λ} onto $\mathfrak{F}_{g,\lambda}$ and satisfies $\mathcal{R}_0(g_1g_2; \lambda) = \mathcal{R}_0(g_1; g_2 \cdot \lambda) \mathcal{R}_0(g_2; \lambda)$. Since we have an IUR U_{λ} of N(D) on \mathfrak{F}_{λ} , we can thus define unitary representations τ_q of G=N(D) $\rtimes S(0)$ on H^q (hence on H^q) $(q=0, 1, \cdots)$.

No. 9]

Theorem 3. Let σ_{G} be the Kirillov-Bernat mapping $\mathfrak{g}^*/G \to \hat{G}$. Then, denoting by $[\tau_q]$ the equivalence class of τ_q , one has $[\tau_q] = \sum_{\eta \in \mathfrak{X}_{n-q}}^{\oplus} \sigma_G(G \cdot \lambda_{\eta})$, where $\mathfrak{X}_{n-q} = \{\eta \in \mathfrak{X}; O_{\eta} \subset \mathbb{Z}_{n-q}\}$.

Remark. τ_0 is the quasi-regular representation of G on the square integrable CR functions on N(D).

It can be shown that $\{G \cdot \lambda_{\eta}; \eta \in \mathfrak{X}\}$ exhausts all open coadjoint orbits in \mathfrak{g}^* . Combining Theorem 3 with [2, p. 132], we get

Theorem 4. $\sum_{0 \leq q \leq n}^{\oplus} \tau_q$ contains all (except for a set of Plancherel measure zero) irreducible unitary representations of G exactly once.

Finally we remark that the IUR belonging to each $\sigma_G(G \cdot \lambda_{\eta})$ is square integrable by [2, Théorème 5.3.4].

The details of this note will appear elsewhere.

References

- [1] J. Dixmier: Von Neumann Algebras. North-Holland, Amsterdam (1981).
- [2] M. Duflo et M. Rais: Ann. Sci. Ec. Norm. Sup., 9, 107-144 (1976).
- [3] B. Magneron: J. Funct. Anal., 59, 90-122 (1984).
- [4] T. Nomura: Proc. Japan Acad., 61A, 133-136 (1985).
- [5] I. I. Pyatetskii-Shapiro: Automorphic Functions and the Geometry of Classical Domains. Gordon and Breach, New York (1969).
- [6] H. Rossi et M. Vergne: Ann. Sci. Ec. Norm. Sup., 9, 31-80 (1976).
- [7] ——: Pacific J. Math., 65, 83-110 (1976).