90. A Remark on the λ-invariant of Real Quadratic Fields

By Takashi Fukuda,*) Keiichi Komatsu,**) and Hideo Wada***) (Communicated by Shokichi Iyanaga, M. J. A., Oct. 13, 1986)

In previous papers [1] and [2] by two of us, we considered Greenberg's conjecture (cf. [3]) on real quadratic case. In [2], it was essential to assume $n_1 < n_2$ for two natural numbers n_1 and n_2 whose definitions will be recalled in the following. The purpose of this paper is to give some examples concerning the case $n_1 = n_2 = 2$.

Let k be a real quadratic field with class number h_k and p an odd prime number which splits in k/Q. Let p be a prime factor of p in k, and ε be a fundamental unit of k. Choose $\alpha \in k$ such that $p^{n_k} = (\alpha)$. We define n_1 (resp. n_2) to be the maximal integer such that $\alpha^{p-1} \equiv 1 \pmod{p^{n_1} \mathbb{Z}_p}$ (resp. $\varepsilon^{p-1} \equiv 1 \pmod{p^{n_2} \mathbb{Z}_p}$). Note that n_1 is uniquely determined under the condition $n_1 \leq n_2$. For the cyclotomic \mathbb{Z}_p -extension

$$k = k_0 \subset k_1 \subset k_2 \subset \cdots \subset k_n \subset \cdots \subset k_{\infty}$$

let A_n be the p-primary part of the ideal class group of k_n , B_n the subgroup of A_n consisting of ideal classes which are invariant under the action of $\operatorname{Gal}(k_n/k)$, and D_n the subgroup of A_n consisting of ideal classes which contain a product of ideal lying over p. Let E_n be the unit group of k_n . For $m \ge n \ge 0$, $N_{m,n}$ denotes the norm maps from k_m to k_n , we shall give a proof for the sake of completeness.

Lemma. Let k be a real quadratic field and p an odd prime number which splits in k/\mathbf{Q} . Assume that

- (1) $n_1 = n_2 = 2$,
- (2) $|A_0|=1$, and
- (3) $N_{1,0}(E_1) = E_0$.

Then we have $|A_n| = |A_1|$ for all $n \ge 1$ and in particular $\mu_p(k) = \lambda_p(k) = 0$, where μ , λ denote the Iwasawa invariants.

Proof. From Proposition 1 of [1], $|B_n|=p$ for all $n \ge 1$. By the assumptions (2) and (3), we have

$$|D_1| = \frac{p}{(E_0; N_{1,0}(E_1))} = p.$$

It follows that $B_n = D_n$ and $N_{n+1,n} : B_{n+1} \to B_n$ are isomorphisms for all $n \ge 1$. Now, $N_{n+1,n} : A_{n+1} \to A_n$ is surjective and its restriction to B_{n+1} is injective. Hence, $N_{n+1,n} : A_{n+1} \to A_n$ are isomorphisms for all $n \ge 1$.

When p=3, k_1 is a real cyclic extension of degree 6 over Q. In this case, we can determine a system of fundamental units of k_1 for a given k

^{*)} Department of Mathematics, Faculty of Science, Yamagata University.

^{**} Department of Mathematics, Tokyo University of Agriculture and Technology.

^{***} Department of Mathematics, Sophia University.

by the method of Mäki [4] and hence determine whether $N_{1,0}(E_1)$ is E_0 or not. We obtain the following Theorem by excuting Mäki's algorithm for those m's which are in the table of [2] and satisfy $n_1 = n_2 = 2$.

Theorem. Let p=3 and $k=Q(\sqrt{m})$ where $m=103,139,418,679,727,790,1153,1261,1609,1642, or 1726. Then the assumptions (1), (2) and (3) of lemma are satisfied for these k's. Hence <math>\mu_s(k)=\lambda_s(k)=0$ for the above values of m's.

Remark. Let $k^* = k(e^{2\pi t/p})$. We remark that $N_{1,0}(E_1) = E_0^p$ if $\lambda_p^-(k^*) = 1$. For k's in our Theorem, we have $\lambda_3^- = 4$ for m = 1609 and $\lambda_3^- = 2$ for others.

References

- [1] T. Fukuda and K. Komatsu: On the λ invariants of Z_p -extensions of real quadratic field. J. Number Theory, 23, 238-242 (1986).
- [2] —: On Z_p -extensions of real quadratic fields. J. Math. Soc. Japan, 38, 95-102 (1986).
- [3] R. Greenberg: On the Iwasawa invariants of totally real number fields. Amer. J. Math., 98, 263-284 (1976).
- [4] S. Mäki: The determination of units in real sextic fields. Springer Lecture Notes in Math., vol. 797 (1980).