86. Products of Compact Fréchet Spaces

By Ken-ichi TAMANO

Faculty of Liberal Arts, Shizuoka University

(Communicated by Kôsaku Yosida, m. j. a., Oct. 13, 1986)

1. Introduction. A topological space X is called Fréchet if each point in the closure of a subset $A \subset X$ is the limit of a sequence from A. In 1972, E. Michael [5] raised the question whether there exist two compact Hausdorff spaces X and Y such that the product space $X \times Y$ is not Fréchet. After then, various examples of such spaces were constructed by T. K. Boehme and M. Rosenfeld [1] (under the continuum hypothesis CH), V. I. Malyhin and B. E. Šapirovskii [4], R. C. Olson [7] (under Martin's axiom), and P. Simon [8] (without extra set-theoretic assumptions).

Generalizing E. Michael's question for more than two compact spaces, T. Nogura [6] asked: For $n \ge 2$, is there a compact Fréchet space X such that X^n is Fréchet but X^{n+1} is not Fréchet?

The purpose of this paper is to answer the question positively under Martin's axiom. Indeed, using G. Gruenhage's technique [2] and Franklin compact spaces, we construct for each n with $3 \leq n \leq \omega$, a compact Fréchet space X such that X^k is Fréchet for any k < n, but X^n is not Fréchet.

All spaces are assumed to be Hausdorff. The symbol ω denotes the first infinite cardinal and, simultaneously, the set of non-negative integers with the discrete topology.

2. Preliminaries. The Stone-Čech compactification of the countable discrete space ω is denoted by $\beta\omega$. For each $A \subset \omega$, the set A^* is defined by $A^* = \operatorname{cl}_{\beta\omega} A - A$. Let \mathcal{P} be an infinite family of disjoint clopen subsets of ω^* . The *Franklin compact space* $F(\mathcal{P})$ is a quotient space of $\beta\omega$ obtained by the decomposition of $\beta\omega$ into $\{\omega^* - \bigcup \mathcal{P}\}$, elements of \mathcal{P} , and one-point sets $\{n\}$ with $n \in \omega$. Express $F(\mathcal{P})$ as $\{\infty\} \cup \mathcal{P} \cup \omega$, or more precisely, as $\{\infty_{\mathcal{P}}\} \cup \mathcal{P} \cup \omega$.

Note that every family \mathcal{P} of disjoint clopen subsets of ω^* can be written as $\mathcal{P} = \{I^* : I \in \mathcal{J}\}$, where the family \mathcal{J} is an almost disjoint family of infinite subsets of ω . A family \mathcal{J} is said to be *almost disjoint* if $I \cap J$ is finite for any distinct members $I, J \in \mathcal{J}$.

It is easy to check the following lemma :

Lemma 1. (a) $F(\mathcal{P})$ is a compact Hausdorff space.

(b) Each point of ω is isolated.

(c) Let $P \in \mathcal{P}$ and $P = I^*$, where $I \in \mathcal{J}$. Then the family $\{\{P\} \cup (I-F) : F \text{ is a finite subset of } \omega\}$ is a neighborhood base at the point $\{P\}$.

(d) The family $\{\{\infty_{\mathcal{P}}\} \cup (\mathcal{P}-Q) \cup (\omega-\bigcup Q-F): Q \text{ is a finite subfamily of } \mathcal{P}, \text{ and } F \text{ is a finite subset of } \omega\}$ is a neighborhood base at the point $\infty_{\mathcal{P}}$.

No. 8]

305

The following lemma was essentially proved by T. K. Boehme and M. Rosenfeld [1], and V. I. Malyhin and B. E. Šapirovskii [4]. G. Gruenhage [2] proved the case $n = \omega$.

Lemma 2. Let $1 \leq n \leq \omega$. Suppose that $\mathcal{P} = \bigcup \{\mathcal{P}_i : i \leq n\}$ is an infinite maximal disjoint family of clopen subsets of ω^* such that $\mathcal{P}_i \cap \mathcal{P}_j = \emptyset$ whenever $i \neq j$. Then the product space $\prod \{\{\infty_{F(\mathcal{P}_i)}\} \cup \omega : i \leq n\}$ is not a Fréchet space as a subspace of the product $\prod \{F(\mathcal{P}_i) : i \leq n\}$ of Franklin compact spaces.

A space X has *countable tightness* if for each $A \subset X$ and $x \in cl A$, there is a countable subset B of A such that $x \in cl B$.

Lemma 3 (V. I. Malyhin [3]). Suppose that X_i is a compact space with countable tightness for each $i \in \omega$. Then the product $\prod \{X_i : i \in \omega\}$ also has countable tightness.

G. Gruenhage constructed the following maximal almost disjoint family in order to show the existence of a countable Fréchet space X such that X^n is Fréchet for all $n \in \omega$, but X^{ω} is not Fréchet.

Lemma 4 [2] (MA). There is an infinite maximal almost disjoint family $\mathcal{J} = \bigcup \{\mathcal{J}_i : i \in \omega\}$ of infinite subsets of ω satisfying the following properties:

(a) $\mathcal{J}_i \cap \mathcal{J}_j = \emptyset$ if $i \neq j$;

(b) each finite subset of ω is contained in a member of \mathcal{J}_i for each $i \in \omega$; and

(c) suppose that $k \in \omega$, $J \subset k$, $\{I_j : j \in J\} \subset \mathcal{J}$ and $A \subset (\prod \{\omega : i \in k - J\}) \times (\prod \{I_j : j \in J\})$ are such that

 $A \cap [([\{ \omega - E(i) : i \in k - J \}) \times ([\{ I_j - F(j) : j \in J \})] \neq \emptyset$

whenever E(i) is a finite union of members of \mathcal{J} , and F(j) is a finite subset of ω . Then for each $m \in \omega$, there is a sequence $\{a_0, a_1, \dots\}$ in A such that whenever E(i) is a finite union of members of $\mathcal{J}-\mathcal{J}_m$ and F(j) is a finite subset of ω , there is a natural number n satisfying that

 $\{a_n, a_{n+1}, a_{n+2}, \cdots\} \subset (\prod \{\omega - E(i) : i \in k - J\}) \times (\prod \{I_j - F(j) : j \in J\}).$

Proof (Sketch). We shall follow the construction of $\mathcal{J} = \bigcup \{\mathcal{J}_i : i \in \omega\}$ = $\{I_i(\alpha) : \alpha < c, i \in \omega\}$ and the notation in [2]. Obviously the property (a) holds. By the construction, for each $i \in \omega$ and a finite subset F of ω , there is $n \in \omega$ with $F \subset I_i(n) \in \mathcal{J}_i$. Therefore (b) is satisfied. It remains to check (c). Suppose the assumption of (c). Similarly to the last paragraph of the proof of Theorem in [2], take $\kappa < c$, $\beta_0 = \beta(\kappa)$, the sequence $\vec{x}_0, \vec{x}_1, \cdots$ in $A = A_{\beta(\kappa)}$ and the partition $\omega = \bigcup \{W_m : m \in \omega\}$ at the κ -stage. Define $\{a_0, \alpha_1, \cdots\} = \{\vec{x}_n : n \in W_m\}$. Observe that $I_m(\kappa) = \{\pi_i(\vec{x}_n) : n \in W_m, i \in k-J\} \in \mathcal{J}_m$, and hence for each $I \in \mathcal{J} - \mathcal{J}_m$, $I \cap I_m(\kappa)$ is finite because \mathcal{J} is an almost disjoint family. Now it is not difficult to check the property (c).

3. Example.

Lemma 5 (MA). For each n with $3 \leq n \leq \omega$, there is a family $\{X_i : i < n\}$ of compact Fréchet spaces such that

(a) if k < n and $\{Y_i : i < k\}$ is a family where each Y_i is equal to X_i for

some j < n, then the product $\prod \{Y_i : i < k\}$ is Fréchet, but

(b) $\prod \{X_i : i < n\}$ is not Fréchet.

Proof. Let $3 \leq n \leq \omega$ and $\mathcal{J} = \bigcup \{\mathcal{J}_i : i \in \omega\}$ be the family in Lemma 4. If $n < \omega$, define $\mathcal{P}_i = \{I^* : I \in \mathcal{J}_i\}$ for each i < n-1 and $\mathcal{P}_{n-1} = \{I^* : I \in \bigcup \{\mathcal{J}_i : n-1 \leq i \in \omega\}\}$. If $n = \omega$, simply define $\mathcal{P}_i = \{I^* : I \in \mathcal{J}_i\}$ for each $i < n = \omega$. Define $X_i = F(\mathcal{P}_i)$ for each i < n. We will show that the family $\{X_i : i < n\}$ of Franklin compact spaces is the desired family. Since $\mathcal{P} = \bigcup \{\mathcal{P}_i : i < n\}$ is an infinite maximal disjoint family of clopen subsets of ω^* , it follows from Lemma 2 that $\prod \{X_i : i < n\}$ is not Fréchet. So it remains to show the property (a) of our theorem.

Let k < n and $\{Y_i : i < k\}$ be a family satisfying that each Y_i is equal to X_j for some j < n. We show that $Y = \prod \{Y_i : i < k\}$ is Fréchet. Since k < n, we can find m < n such that $X_m \neq Y_i$ for each i < k. Fix such m. To show the Fréchet property of Y, let $y \in Y$, $B \subset Y$ and $y \in cl B$. Without loss of generality, we may assume that $y = (\{I_0^*\}, \{I_1^*\}, \dots, \{I_{p-1}^*\}, \infty_p, \dots, \infty_{p+q-1}, \infty_{p+q}, \dots, \infty_{k-1})$ and $B \subset \omega^p \times \mathcal{P}_p \times \dots \times \mathcal{P}_{p+q-1} \times \omega^{k-p-q}$. The other cases are trivial or reducible to a case similar to this one.

Since every Franklin compact space has countable tightness, by Lemma 3, Y also has countable tightness. So we may assume that B is a countable set. Then there is a countable subfamily $Q_{p+r} \subset \mathcal{P}_{p+r}$ for each $r=0, 1, 2, \cdots, q-1$ such that $B \subset \omega^p \times Q_p \times \cdots \times Q_{p+q-1} \times \omega^{k-p-q}$. Pick an arbitrary member $I_{p+r}^* \in \mathcal{P}_{p+r}$ for each $r=0, 1, \cdots, q-1$. Since $\{\infty_{p+r}\} \cup Q_{p+r}$ is homeomorphic to a convergent sequence, it is homeomorphic to $\{I_{p+r}^*\} \cup I_{p+r} \subset \{I_{p+r}^*\} \cup \omega$. Hence we may assume moreover that $y=(\{I_0^*\}, \{I_1^*\}, \cdots, \{I_{p-1}^*\}, \{I_p^*\}, \cdots, \{I_{p+q-1}^*\}, \infty_{p+q}, \cdots, \infty_{k-1})$ and $B \subset \omega^p \times \omega^q \times \omega^{k-p-q} = \omega^k$.

By the argument similar to [2], we obtain a set $J \subset k$, a family $\{I_j: j \in J\} \subset \mathcal{J}$ and a subset A of B satisfying the assumption of Lemma 4 (c). Recall that $X_m \neq Y_i$ for each i < k. Therefore the family of all sets of the form $(\prod \{\omega - E(i): i \in k - J\}) \times (\prod \{I_j - F(j): j \in J\})$, where E(i) is a finite union of members of $\mathcal{J} - \mathcal{J}_m$ and F(j) is a finite subset of ω , becomes a local network at y in Y. Hence the sequence $\{a_0, a_1, \cdots\}$ in A obtained by Lemma 4 (c) converges to y. The proof is completed.

Theorem 6 (MA). For each n with $3 \leq n \leq \omega$, there is a compact Fréchet space X such that X^k is Fréchet for any k < n, but X^n is not Fréchet.

Proof. Take the family $\{X_i: i < n\}$ of Lemma 5. If $n < \omega$, let X be the disjoint topological sum $\bigoplus\{X_i: i < n\}$. If $n = \omega$, let X be the one point compactification of $\bigoplus\{X_i: i < n = \omega\}$. Since X^n contains $\prod\{X_i: i < n\}$, X^n is not Fréchet. It remains to prove that X^k is Fréchet for any k < n. If $n < \omega$, this follows immediately from Lemma 5.

Suppose $n = \omega$. Denote by p the only one point of the set $X - \bigoplus \{X_i : i < \omega\}$. We must show the Fréchet property at points of X^k whose coordinates contain p. But the neighborhood base at p in X is the same as a convergent sequence if we identify each X_i to a point x_i . Therefore by the

No. 8]

argument similar to the proof of Lemma 5, we can show that X^{k} is Fréchet. Problem. Are Lemma 5 and Theorem 6 true within ZFC?

References

- [1] T. K. Boehme and M. Rosenfeld: An example of two compact Hausdorff Fréchet spaces whose product is not Fréchet. J. London Math. Soc., 8, 339-344 (1974).
- [2] G. Gruenhage: A note on the product of Fréchet spaces. Topology Proceedings, 3, 109-115 (1978).
- [3] V. I. Malyhin: On tightness and Suslin number in exp X and in a product of spaces. Soviet Math. Dokl., 13, 496-499 (1972).
- [4] V. I. Malyhin and B. E. Šapirovskii: Martin's axiom and properties of topological spaces. ibid., 14, 1746–1751 (1973).
- [5] E. Michael: A quintuple quotient quest. Gen. Topology Appl., 2, 91-138 (1972).
- [6] T. Nogura: The product of $\langle \alpha_i \rangle$ -spaces. Topology Appl., 21, 251–259 (1985).
- [7] R. C. Olson: Bi-quotient maps, countably bi-sequential spaces, and related topics. Gen. Topology Appl., 4, 1-28 (1974).
- [8] P. Simon: A compact Fréchet space whose square is not Fréchet. Comment. Math. Univ. Carolinae, 21, 749-753 (1980).