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1o Introduction. The purpose of this is to present some new two-
step methods, which deal with the following initial value problem"
(1.1) y’=f(x, y), y(Xo)=Yo.
Of all computational methods for (1.1), Runge-Kutta (abbr., R-K) are most
popular. R-K methods retain the advantage of one-step methods, but need
some functional evaluations for each step. We shall look for other methods
to decrease the functional evaluations in R-K methods. Such methods
have been discussed by Byrne, Lambert [1] and many others. We have
seen in [1] that two-step R-K methods have order p(r)=r+l (r--2, 3, 4),
and that R-K methods [2], [3] have order p(r)=r (r=l, 2, 3, 4), p(5)=4, p(6)
=5, p(r)=6 (r=7, 8), p(r)=7 (r=9, 10), p(ll)=8, where p(r) denotes the
highest order that can be attained by an r-stage. Thus two-step R-K
methods attain higher order than R-K methods for the same stage. How-
ever, in actual computation, two-step R-K methods would not yield as
good numerical results as R-K methods for the same order, and some people
seem to have the opinion that two-step R-K methods may not be useful for
actual computations, but some useful two-step methods are still required
in many fields. We now propose the following two-step R-K methods which
improve the defect of the usual two-step R-K methods"
(1.2) Yn+l--V)Yn-I---V(2)Yn---hq()(xn-1, Xn, Y-. Yn-l+e, Yn, Y+ h),

y++=V)y_- V()yn--[-hq()(xn_l, Xn, Y_, Y_+, Y, Yn+; h),
q()(x_, x, Yn-, Y-1+1, Y, Y+)= .=x (W)k(x-)+S)k(xn))

(00--01, 02_1), (]=1, 2),
k(x_j)=f(x_, Yn-) (/=0, 1),
k(xn_)--f(x_l+ah, yn_+by_/ol+h:bk(xn_)),

r-1k(x)-f(xn+ch, y+dy/o2/h ]j:l dk(Xn)),
r-1a,=b--,j: b,, c=d-t-;i d. (Oa, c_l).

In our methods, we have p(2)--5. In using our method, we assume
that we have already computed the value o y(Xo+Oh), y(xo/h) and
y(x0+(l+t)h) by some other means, where y(x) denotes the analytical solu-
tions o (1.1). We first calculate the value o y and y,/ by some means
of (1.2), and next proceed to the calculation of y.and y/. To demonstrate
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our idea, we present our method (1.2) for r--2 below. Stability analysis,
numerical results and other related results will appear elsewhere.

2. Numerical method (r=2). It can be seen that in (1.2) there are
some parameters which must be determined. To obtain specific values
or these parameters, we expand Yn+I in (1.2) in terms of, h such as that it
agrees with the solution of the differential equation up to order five in its
Taylor series. This yields the following results"
(2.1) y++-- =(.. k(x_)+ k(x)),

k(x_)=f(x_, y_), k(x_)=f(x_+ah, Y-I+),
k(x)=f(x, y), k(x)=f(x+ch, y+) (i=0, 1),

and

where
W1) Wda, c, 0), .q() S(a, c, O) V) V,(a, c, O)
W(2) W(a, c, a), S) =S,(a, c, a) v() V,(a, c, a),--i

W) W(c, a, O), S) S,(c, a, 0), v() V(c, a, O)
v() V,(c, a, O)W) W,(c, a, a), .() S,(c, a, 0),

V)=1- V), V)=1- V) (i= 1, 2),
S(a, b, 8)(=S) (+1)(+2){(a 1)(5a- 2)- (4a- 2)(+ 1)}
X {(2b(b + 1)(10ab + 5a- 5b 2)(a-- b 1)} -,

V(a, b, )(= V,) [b(b + )(a-- b )S-(/60)(+)
{5(3+ 7)(a-- 1) 3(+ 1)(4+ 9)}]60(5a-- 2)-,

W(a, b, )(= W) {(+1)(2+ 5)- 6b(b +1)S- V){6a(a- 1)}-,
W(a, b, )(= W)= 0.5(8+ 1)+0.5V+(a-1)W+bS,
S(a, b, O)=I+O-(W+W+S-
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