82. On Kakeya's Maximal Function

By Satoru Igari
Mathematical Institute, Tôhoku University
(Communicated by Kôsaku Yosida, m. J. A., Oct. 13, 1986)

Let \mathcal{R} be a family of non-empty bounded open sets in the d-dimensional Euclidean space \boldsymbol{R}^{d}. For a locally integrable function f on \boldsymbol{R}^{d} the maximal operator $M_{\mathscr{R}}$ with respect to \mathcal{R} is defined by

$$
M_{\mathscr{Q}} f(x)=\sup _{x \in R \in \mathbb{R}} \frac{1}{|R|} \int_{R}|f| d y
$$

The maximal operators of this description are used effectively to estimate some operators arising, especially, in harmonic analysis. When \mathcal{R} is the family of all open balls in $\boldsymbol{R}^{d}, M_{\mathscr{R}} f$ is Hardy-Littlewood maximal function. For given real numbers $N>2$ and $a>0$ let \mathcal{R} be the family of rectangles in \boldsymbol{R}^{d} with dimension $a \times \cdots \times a \times a N$, but with arbitrary direction. When $d=2$, by Cordoba's theorem (cf., e.g., [1])

$$
\left\|M_{\mathfrak{R}} f\right\|_{2} \leq C(\log N)^{1 / 2}\|f\|_{2}
$$

for $f \in L^{2}\left(\boldsymbol{R}^{2}\right)$, where C is a constant independent of a, N and f, and $\|f\|_{2}$ $=\left(\int_{R^{2}}|f|^{2} d x\right)^{1 / 2}$.

In this note we shall consider the higher dimensional case of Cordoba's inequality for functions of product type. We use the same notation C for a constant independent of a and N. It may be different in each occasion.

Theorem. Let $d \geq 3$. There exists a constant C such that

$$
\left\|M_{\mathscr{R}} f\right\|_{d} \leq C(\log N)^{3 / 2}\|f\|_{d}
$$

for all f in $L^{a}\left(\boldsymbol{R}^{d}\right)$ of the form $f\left(x_{1}, \cdots, x_{d}\right)=f_{1}\left(x_{1}\right) \cdots f_{d}\left(x_{a}\right)$.
Proof. We may assume $a=1$. Decompose \boldsymbol{R}^{d} into cubes Q_{p} which have side length 1 and centers at lattice points p. We choose rectangles R_{p} so that each R_{p} has dimension $2 \sqrt{\bar{d}} \times \cdots \times 2 \sqrt{d} \times 2 N$ and center at p, and

$$
\begin{equation*}
M_{R} f(x) \leq(2 \sqrt{d})^{d} \sum_{p} \frac{1}{\left|R_{p}\right|} \int_{R p}|f| d y \cdot \chi_{Q_{p}}(x) \tag{1}
\end{equation*}
$$

where χ_{E} denotes the characteristic function of a set E. Let $T f(x)$ be the sum on the right hand side of (1). Fix $1 \leq i<j \leq d$. For $x=\left(x_{1}, \cdots, x_{a}\right)$ denote $\bar{x}=\left(x_{i}, x_{j}\right)$ and $\overline{\bar{x}}=\left(x_{1}, \cdots, x_{i-1}, x_{i+1}, \cdots, x_{j-1}, x_{j+1}, \cdots, x_{d}\right)$. We shall prove that

$$
\begin{equation*}
\int_{R^{2}}\left(\sup _{\bar{x}} T f\right)^{2} d \bar{x} \leq C(\log N)^{3} \int_{R^{2}}\left(\sup _{\bar{x}}|f|\right)^{2} d \bar{x} \tag{2}
\end{equation*}
$$

Then by an interpolation theorem for operators on mixed normed spaces given in the previous paper [2] we get our theorem for functions f of product type.

To show (2) we consider the dual operator $T^{*} a(x)=\sum_{p} a_{p}\left|R_{p}\right|^{-1} \chi_{R_{p}}(x)$ for sequences $a=\left\{a_{p}\right\}$ of complex numbers. We shall prove that

$$
\begin{equation*}
\left\{\int_{R^{2}}\left(\int_{R^{d-2}}\left|T^{*} a\right|^{2} d \overline{\bar{x}}\right)^{2} d \bar{x}\right\}^{1 / 2} \leq C(\log N)^{3 / 2}\left\{\sum_{\bar{p}}\left(\sum_{\bar{p}}\left|a_{p}\right|\right)^{2}\right\}^{1 / 2} \tag{3}
\end{equation*}
$$

Lemma 1. There exist rectangles S_{p} in R^{2} such that
(i) S_{p} has dimension $2 \sqrt{\bar{d}} \times M_{p}$ with $2<M_{p}<2 N$ and center at \bar{p}, and
(ii)

$$
\begin{equation*}
\int_{R^{d-2}}\left|T^{*} a(x)\right| d \overline{\bar{x}} \leq C \sum_{p}\left|a_{p}\right|\left|S_{p}\right|^{-1} \chi_{S_{p}}(\bar{x}) \tag{4}
\end{equation*}
$$

Proof. Fix a rectangle R_{p} and assume $p=0$. Let $B=\{|x|<2 \sqrt{d}\}$. Then we can choose a unit vector u in R^{a} so that $R_{p} \subset B+\{j u:|j| \leq N\}=E$, say. Put $\rho(\bar{x})=\int \chi_{E}(x) d \overline{\bar{x}}$ and $S_{p}=\{\bar{x}:|\bar{x}-j \bar{u}|<2 \sqrt{d}$ for some $|j| \leq N\}$. Then support of $\rho \subset S_{p}$ and $\rho(\bar{x}) \leq C /|\bar{u}|$. Therefore $\rho(\bar{x}) \leq C\left|R_{p}\right| /\left|S_{p}\right|$, from which Lemm 1 follows.

Now we introduce a function $\bar{T}^{*} a(\bar{x})=\sum_{p} a_{p}\left|S_{p}\right|^{-1} \chi_{S_{p}}(\bar{x})$.
Lemma 2. Let $k \geq 1$ and assume $2^{k} \leq\left|S_{p}\right|<2^{k+1}$ for all p. Then

$$
\int_{R^{2}}\left|\bar{T}^{*} a\right|^{2} d \bar{x} \leq C k \sum_{p}\left(\sum_{\bar{p}}\left|a_{p}\right|\right)^{2} .
$$

Proof. Put $P_{0}=\left\{\bar{p}=\left(p_{i}, p_{j}\right) \in \boldsymbol{Z}^{2}:\left|p_{i}\right|,\left|p_{j}\right| \leq 2^{k}\right\}$ and $P_{\mu}=P_{0}+2^{k+1} \mu$ for $\mu \in Z^{2}$. Since $\left|S_{p} \cap S_{q}\right|=0$ if $|\bar{p}-\bar{q}|>2^{k+1}$, we have

$$
\begin{align*}
\int\left|\bar{T}^{*} a\right|^{2} d \bar{x} & \leq 2^{-2 k} \sum_{\mu} \int\left(\sum_{\bar{p} \in P_{\mu}} \sum_{\bar{p}}\left|a_{p}\right| \chi_{S_{p}}(\bar{x})\right)^{2} d \bar{x} \tag{5}\\
& \leq 2^{-k+1} \sum_{\mu} \sum_{p_{i}} \int\left(\sum_{p_{j}} \sum_{\bar{p}}\left|a_{p}\right| \chi_{S_{p}}(\bar{x})\right)^{2} d \bar{x},
\end{align*}
$$

where (p_{i}, p_{j}) $=\bar{p}$ runs over P_{μ}. We may assume $\left|S_{p} \cap S_{q}\right| \leq C 2^{k} /\left(\left|p_{j}-q_{j}\right|+1\right)$ for $\bar{p}=\left(p_{i}, p_{j}\right), \bar{q}=\left(p_{i}, q_{j}\right) \in P_{\mu}$ by a geometric consideration (cf. [1]). Thus the right hand side of (5) does not exceed

$$
C \sum_{\mu} \sum_{p_{i}} \sum_{p_{j}, q_{j}}\left(\sum_{\bar{p}}\left|a_{p}\right|\right)\left(\sum_{\vec{q}}\left|a_{q}\right|\right) /\left(\left|p_{j}-q_{j}\right|+1\right) \leq C k \sum_{\mu} \sum_{\bar{p} \in P_{\mu}}\left(\sum_{\vec{p}}\left|a_{p}\right|\right)^{2}
$$

which proves Lemma 2.
Put $\bar{T}_{k}^{*} a=\sum^{k} a_{p}\left|S_{p}\right|^{-1} \chi_{S_{p}}$, where \sum^{k} denotes the summation over p such that $2^{k} \leq\left|S_{p}\right|<2^{k+1}$. Then, by Lemma 2, the left hand side of (3) is dominated by

$$
\sum_{k=1}^{c+\log N}\left(\int\left|\bar{T}_{k}^{*} a\right|^{2} d \bar{x}\right)^{1 / 2} \leq C \sum_{k=1}^{C+\log N} \sqrt{k}\left\{\left(\sum_{\bar{p}} \sum_{\bar{p}}\left|a_{p}\right|\right)^{2}\right\}^{1 / 2},
$$

which implies (3).

References

[1] A. Cordoba: The Kakeya maximal function and the spherical summation multipliers. Amer. J. Math., 99, 1-22 (1977).
[2] S. Igari: Interpolation of linear operators in Lebesgue spaces with mixed norm. Proc. Japan Acad., 62A, 46-48 (1986) (A detailed proof will appear in Tôhoku Math. J., 38, 469-490 (1986)).

