81. Periodicity and Almost Periodicity of Solutions to Free Boundary Problems in Hele-Shaw Flows

By Masahiro Kubo
Department of Pure and Applied Sciences, College of Arts and Sciences, University of Tokyo
(Communicated by Kôsaku Yosida, M. J. A., Oct. 13, 1986)

This paper is concerned with the asymptotic behavior of solutions to the following problem : given f, g_{0}, g_{1} and u_{0}, find u such that

$$
\begin{cases}\frac{\partial u}{\partial t}-\Delta v=f, & v \in \beta(u) \quad \text { in }(0, \infty) \times \Omega \tag{1}\\ v=g_{0} & \text { on }(0, \infty) \times \Gamma_{0} \\ \frac{\partial v}{\partial n}+p \cdot v=g_{1} & \text { on }(0, \infty) \times\left(\Gamma \backslash \Gamma_{0}\right) \\ u(0)=u_{0} & \text { in } \Omega,\end{cases}
$$

where Ω is a bounded domain in R^{N} with smooth boundary Γ, Γ_{0} is a compact subset of Γ with positive surface measure, p is a positive bounded measurable function on Γ and β is a maximal monotone graph in $\boldsymbol{R} \times \boldsymbol{R}$. In [6] and [7], the global behavior of solutions to (1) is studied in case when β is Lipschitz continuous. This case corresponds to a Stefan problem in a weak sense. But, for instance, in the weak formulations of free boundary problems arising from Hele-Shaw flows and electro-chemical machining processes, β is in general multi-valued (cf. [3, 8, 12, 13, 14, 15]). In [10] and [11], the stability of solutions to general evolution equations generated by time-dependent subdifferentials is studied. But their results do not seem to be directly applicable to our problem. In this paper, we extend a part of the results in [7] to a class of β including the case of Hele-Shaw flows and electro-chemical machining processes.

Let us use the notations: $H=L^{2}(\Omega)$ with inner product $(\cdot, \cdot)_{H}$. And put $V=\left\{z \in H^{1}(\Omega) ; z=0\right.$ a.e. on $\left.\Gamma_{0}\right\}$. Then V becomes a Hilbert space with inner product

$$
(z, y)_{V}=\int_{\Omega} \nabla z \cdot \nabla y \mathrm{dx}+\int_{\Gamma} p(x) z(x) y(x) \mathrm{d} \Gamma \quad \text { for } z, y \in V
$$

We denote by V^{*} the dual space of V and regard V^{*} as a Hilbert space with inner product $(z, y)_{*}=\left\langle z, F^{-1} y\right\rangle_{V^{*}, V}$ and norm $|z|_{*}=\langle z, z\rangle_{*}^{1 / 2}$ where $\langle\cdot, \cdot\rangle_{V^{*}, V}$ is the duality between V^{*} and V and F is the duality mapping from V onto V^{*}.

Definition 1. For given constants $a>0$ and $b \geqq 0$, let $B(a, b)$ be the set of all maximal monotone graph β in $\boldsymbol{R} \times \boldsymbol{R}$ such that $\beta=\partial \hat{\beta}$ for some $\hat{\beta}: \boldsymbol{R} \rightarrow \boldsymbol{R} \cup\{\infty\}$ proper l.s.c. (lower-semicontinuous) convex function with $\hat{\beta}(0)=0$ and $\hat{\beta}(r) \geqq a|r|^{2}-b$ for all $r \in \boldsymbol{R}$.

In the problem associated with Hele-Shaw flows, β is the inverse of the Heaviside graph, so that $\beta \in B(1,1)$.

Given $\beta \in B(a, b)$ and $g \in W_{10 c}^{1,1}(\boldsymbol{R} ; H)$, we define a function φ^{t} on V^{*} for each $t \in \boldsymbol{R}$ by

$$
\varphi^{t}(z)=\left\{\begin{array}{cl}
\int_{\Omega} \hat{\beta}(z(x)) \mathrm{dx}-(g(t), z)_{H} & \text { if } z \in H \tag{2}\\
\infty & \text { if } z \in V^{*} \backslash H
\end{array}\right.
$$

Lemma 1 (cf. [4, 5]). For each $t \in \boldsymbol{R}, \varphi^{t}$ is a proper l.s.c. convex function on V^{*} with $D\left(\varphi^{t}\right)=\left\{z \in H ; \hat{\beta}(z) \in L^{1}(\Omega)\right\}$ and for $u, u^{*} \in V^{*}, u^{*} \in \partial \varphi^{t}(u)$ if and only if the following conditions hold:
(i) $u \in D\left(\varphi^{t}\right)$.
(ii) There exists $v \in H$ such that $v-g(t) \in V, u^{*}=F(v-g(t))$ and $v(x)$ $\in \beta(u(x))$ for a.e. $x \in \Omega$.

Now consider the nonlinear evolution equation in V^{*} :
(3)

$$
u^{\prime}(t)+\partial \varphi^{t}(u(t)) \ni f(t), \quad \text { for a.e. } t \in \boldsymbol{R}_{+} .
$$

On account of Lemma 1, this expression is nothing but the variational formulation of problem (1), provided that we take as $g(t, \cdot)$ the function determined by g_{0} and g_{1} in a suitable way (see $[4,5]$).

Definition 2. Let β and g be as above and let $f \in L_{\mathrm{loc}}^{2}\left(\boldsymbol{R} ; V^{*}\right)$. Then $u: J=\left[t_{0}, t_{1}\right] \rightarrow V^{*}$ is called a solution to $E(\beta, g, f)$ on J, if it satisfies the following conditions:
(a) $u \in C\left(J ; V^{*}\right) \cap W_{\text {loc }}^{1,2}\left(\left(t_{0}, t_{1}\right] ; V^{*}\right)$.
(b) $t \mapsto \varphi^{t}(u(t))$ is in $L^{1}(J)$, where $\varphi^{t}, t \in \boldsymbol{R}$ is given by (2).
(c) (3) holds.

Also for general interval J in $R, u: J \rightarrow V^{*}$ is called a solution to $E(\beta, g, f)$, if it is a solution to $E(\beta, g, f)$ on every compact subinterval of J in the above sense.

By virtue of the general existence-uniqueness result (cf. [9]), we have
Lemma 2. For given $\beta \in B(a, b), g \in W_{\text {loc }}^{1,1}(\boldsymbol{R} ; H), f \in L_{\text {loc }}^{2}\left(\boldsymbol{R} ; V^{*}\right)$ and u_{0} in the closure of $\left\{z \in H ; \hat{\beta}(z) \in L^{1}(\Omega)\right\}$ in V^{*}, there exists a unique solution u to $E(\beta, g, f)$ on \boldsymbol{R}_{+}with $u(0)=u_{0}$ such that $u \in L_{\text {loc }}^{\infty}((0, \infty) ; H)$ and $t \mapsto \varphi^{t}(u(t))$ is in $W_{\text {loc }}^{1,1}(0, \infty)$).

We are interested in the periodic and almost periodic behavior of solutions to $E(\beta, g, f)$ on \boldsymbol{R}. We shall state only the results about the almost periodicity of solutions. In case when f and g are periodic with the same period T, the corresponding results are obtained as corollaries of them, because in this case every V^{*}-bounded solution on R must be T periodic (cf. [7]). For the periodic case, also see [8].

Theorem. Let $\beta \in B(a, b), g \in W_{\text {loc }}^{1,1}(\boldsymbol{R} ; H)$ be an H-almost periodic function and $f \in L_{\mathrm{loc}}^{2}\left(\boldsymbol{R} ; V^{*}\right)$ be a V^{*}-almost periodic function in the sense of Stepanov (cf. [1]). Suppose that $\sup _{t \in R}\left|g^{\prime}\right|_{L^{1(t, t+1 ; H)}}<\infty$ and that if $\left\{t_{n}\right\}$ is a sequence in \boldsymbol{R} and if $g\left(t+t_{n}\right) \rightarrow \hat{g}(t)$ in H uniformly in $t \in \boldsymbol{R}$ as $n \rightarrow \infty$, then $\hat{g} \in W_{\text {loc }}^{1,1}(\boldsymbol{R} ; H)$ and $\sup _{t \in \boldsymbol{R}}\left|\hat{g}^{\prime}\right|_{L(t, t+1 ; H)}<\infty$. Then we have:
(i) $A P \equiv\left\{u ; u\right.$ is a V^{*}-almost periodic solution to $E\left(\beta, g, f^{\prime}\right)$ on $\left.\boldsymbol{R}\right\} \neq \phi$.
(ii) For each solution u to $E(\beta, g, f)$ on \boldsymbol{R}_{+}, there exists $\omega \in A P$ such that $u(t)-\omega(t) \rightarrow 0$ in V^{*} and weakly in H as $t \rightarrow \infty$.
(iii) Let $\omega_{1}, \omega_{2} \in A P$ and let $\omega_{i}+F\left(\eta_{i}-g\right)=f, \eta_{i} \in \beta\left(\omega_{i}\right)$ a.e. on $\boldsymbol{R}, i=1,2$. Then $\eta_{1}(t)=\eta_{2}(t)$ for a.e. $t \in \boldsymbol{R}$ and there is an element α in H such that $\omega_{1}(t)$ $=\omega_{2}(t)+\alpha$ for all $t \in \boldsymbol{R}$.
(iv) A solution u to $E(\beta, g, f)$ on \boldsymbol{R} is V^{*}-almost periodic if and only if u is V^{*}-bounded on \boldsymbol{R} i.e. $\sup _{t \in \boldsymbol{R}}|u(t)|_{*}<\infty$.

The proof is similar to that in [7]. The different point is the following Lemma.

Lemma 3. Let β, g and f be as in the Theorem. Suppose that u_{i} $(i=1,2)$ are solutions to $E(\beta, g, f)$ on an interval J. Assume that (4) $\quad t_{\mapsto} \rightarrow u_{1}(t)-\left.u_{2}(t)\right|_{*} \quad$ is constant on J.

Then we have

$$
\begin{equation*}
u_{1}^{\prime}(t)=u_{2}^{\prime}(t) \quad \text { for } \text { a.e. } t \in J . \tag{5}
\end{equation*}
$$

Proof. We use the technique in (2). Let $\varphi^{t}, t \in \boldsymbol{R}$ be given by (2) and let $u_{i}^{\prime}+F\left(v_{i}-g\right)=f$ and $v_{i} \in \beta\left(u_{i}\right)$ a.e. on $J(i=1,2)$. Then we have $\varphi^{t+h}\left(u_{i}(t+h)\right)-\varphi^{t}\left(u_{i}(t)\right)$

$$
\begin{aligned}
& =\int_{\Omega} \hat{\beta}\left(u_{i}(t+h)\right) \mathrm{dx}-\int_{\Omega} \hat{\beta}\left(u_{i}(t)\right) \mathrm{dx}-\left(g(t+h), u_{i}(t+h)\right)_{H}+\left(g(t), u_{i}(t)\right)_{H} \\
& \geqq\left(v_{i}(t), u_{i}(t+h)-u_{i}(t)\right)_{H}-\left(g(t+h), u_{i}(t+h)\right)_{H}+\left(g(t), u_{i}(t)\right)_{H} \\
& =\left\langle v_{i}(t)-g(t), u_{i}(t+h)-u_{i}(t)\right\rangle_{V^{*}, V}-\left(g(t+h)-g(t), u_{i}(t+h)\right)_{H} \\
& =\left(f(t)-u_{i}^{\prime}(t), u_{i}(t+h)-u_{i}(t)\right)_{*}-\left(g(t+h)-g(t), u_{i}(t+h)\right)_{H}, \quad i=1,2 .
\end{aligned}
$$

Since $u_{i}, i=1,2$ are weakly continuous in H, we obtain by dividing both sides of the above inequality by h and letting $h \rightarrow 0$,

$$
\begin{align*}
\frac{d}{d t}\left\{\varphi^{t}\left(u_{i}(t)\right)\right\}=\left(f(t)-u_{i}^{\prime}(t), u_{i}^{\prime}(t)\right)_{*}- & \left(g^{\prime}(t), u_{i}(t)\right)_{H} \tag{6}\\
& \text { for a.e. } t \in J, i=1,2 .
\end{align*}
$$

On the other hand, from (4) and [11; Lemma 4.4], we have

$$
f(t)-u_{2}^{\prime}(t) \in \partial \varphi^{t}\left(u_{1}(t)\right) \quad \text { and } \quad f(t)-u_{1}^{\prime}(t) \in \partial \varphi^{t}\left(u_{2}(t)\right) \quad \text { for a.e. } t \in J .
$$

From this fact we have similarly

$$
\begin{equation*}
\frac{d}{d t}\left\{\varphi^{t}\left(u_{1}(t)\right)\right\}=\left(f(t)-u_{2}^{\prime}(t), u_{1}^{\prime}(t)\right)_{*}-\left(g^{\prime}(t), u_{1}(t)\right)_{H} \tag{7}
\end{equation*}
$$ for a.e. $t \in J$

and

$$
\begin{equation*}
\frac{d}{d t}\left\{\varphi^{t}\left(u_{2}(t)\right)\right\}=\left(f(t)-u_{1}^{\prime}(t), u_{2}^{\prime}(t)\right)_{*}-\left(g^{\prime}(t), u_{2}(t)\right)_{H} \tag{8}
\end{equation*}
$$

$$
\text { for a.e. } t \in J \text {. }
$$

Combining (6), (7) and (8) we obtain (5).

References

[1] Amerio, L. and G. Prouse: Van Nostrand, New-York-Cincinnati-Toronto-LondonMerbourne (1971).
[2] Baillon, J. B. and A. Haraux: Arch. Rat. Mech. Anal., 67, 101-109 (1977).
[3] Crowley, A. B.: J. Inst. Maths Applics, 24, 43-57 (1979).
[4] Damlamian, A.: Thèse, Univ. Paris VI (1976).
[5] ——: Comm. P.D.E., 2, 1017-1044 (1977).
[6] Damlamian, A. and N. Kenmochi: (to appear in Japan J. Appl. Math.).
[7] -: Tech. Reports Math. Sci., no. 13, Chiba Univ. (1985).
[8] DiBenedetto, E. and A. Friedman: (to appear in J. Diff. Eqs.).
[9] Kenmochi, N.: Bull. Fuc. Education, Chiba Univ., 30, 1-87 (1981).
[10] Kenmochi, N. and M. Ôtani: (to appear in Funk. Ekvac.).
[11] -: (to appear in Memorie di Mat. Acad. Naz. XL).
[12] Kenmochi, N. and I. Pawlow: (to appear in Nonlinear Anal. T.M.A.).
[13] McGeough, J. A. and H. Rasmussen: J. Inst. Maths Applics, 13, 13-21 (1974).
[14] Visintin, A.: Research Notes in Math., vol. 79, Pitman, Boston-London-Melbourne (1983).
[15] -: J. Math. Appl., 95, 117-143 (1983).

