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8 Special Values of Euler Products and
Hardy.Littlewood Constants

By Nobushige KUIt0KAWA
Department of Mathematics, Tokyo. Institute of Technology

(Communicated by Kunihiko KODAIRA, M.J.A., Jan. 13, 1986)

We note an interpretation of Hardy-Littlewood constants (originally
constructed by Hardy-Littlewood [2] and generally by Bateman-Horn [1])
as special values of certain Euler products treated in author’s papers [3],
[4], [5] supplementing the ending remark of [6]. The contents of this report
were presented in a seminar of Research Center for Advanced Mathematics
on "spatial zeta functions" at Nagoya University in November 1985. The
author is grateful to thank Professor T. Sunada for his invitation to that
;seminar with supplying important information containing vast results of
his school partially summarized in Sunada [9], and would like to express
hearty thanks to Professor K. Shiga for making that opportunity.

Let f(X)e Z[X] be a separable primitive polynomial in one variable
with coefficients in the rational integers Z. For each prime number p we
put N(p, f)={x e F; f(x)=O}, where f(X) e F[X] denotes the reduction of
f(X) modulo p, F being the finite field of p elements, and denotes the
cardinality, so O<=N(p, f)<=p. We define the "zeta function" Z(s, f) of f
by

Z(s, f)-- l-[ (1--N(p, f)p-)
P

where p runs over all prime numbers. (We do not take the inverse since
the above form is suitable for our purpose below.) Let M(f)-Spec (Z[X]/
(f)) be the scheme associated with f over Spec (Z), then the Hasse-Weil
zeta function 5(s, M(f)) of the one dimensional space M(f) is equal to

5(s,/(f))= ]-[ (1--N(p, f)p-* +...)-1,
P

so we can consider Z(s, f) as a truncated zeta function of M(f). Now the
Hardy-Littlewood constant C(f) of f(X) is defined via

C(f)= 1-I (1--N(p,
P

where r(f) denotes the number of irreducible factors of f(X) in Z[X], and
p runs over all prime numbers according to the natural order 2, 3, (since
this infinite product does not converge absolutely in general).

Theorem A1. Let f(X) be as abo.ve.
(1) Z(s, f)is meromo.rphic in Re (s)>0. It is meromorphic .on C if

deg (f)l, and otherwise it has the natural boundary Re (s)=0.
(2) Z(s, f)is holomorphic in Re (s)_>_l and has the following Taylor

expansion at s 1
Z(s, f)=C(f)(s- 1)r(f) + (higher order terms).
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Proo]. We denote by D(f) the discriminant of f(X). Then D(f) is
a non-zero rational integer. Let f(X)=f(X)...f(X) be the decomposition
into irreducible factors with r=r(f);f(X) are separable primitive irre-
ducible polynomials in Z[X]. Let K be the splitting field of f(X) over the
rational number field Q and put K=Q[X]/(fJ considering K as a subfield
of K. We put G=Gal (K/Q) and H--Gal (K/KJ. Let a=Ind (1) be the
permutation representation of G on G/H, and put a--a...a. Let
(s, KJ== c(n)n be the expansion o the Dedekind zeta unction of K.
We denote by P the set of all prime numbers not dividing D(f). We define
an Euler datum E=(P, G, ) via G=Gal (K/Q) and the Frobenius map
a’P-Conj (G) (remark that each p e P is unramified in K/Q, so a in
unique). Let p e P then

N(p, f)--,, Y(p, fJ= c(p)= _, tr (a(cffp)))--tr (a((p))).
i=1 i=1 i=l

(Remark that c,(p) is equal to the number of prime ideals of K, over p of
degree 1.) Hence putting H(T)--1--tr (a)T we have

Z(s, f)---L(s, E, H)- (1--N(p, f)P-9.
p]D(f)

Since ’(H)--deg(f), the part (1) follows rom [3, Theorem 1] (see [4-I,
Theorem 1] and [5-I, Theorem 1] also). For the part (2) note that the
multiplicity of the trivial representation in a is r, hence (S)rZ(S, f)is holo-
morphic at s=l and

lim (s-1)-Z(s, f)= lim (s)Z(s, f)=C(f). Q.E.D.

Remark A1. I occurs ha C(/)=0 when N(,/)= for some (an
example"/(X) X(X+ 1), N(2,/) 2).

Remark A2. I is natural ha (,/) would be holomorphie in Re ()

Let f(X), E=(P, G, ) and a’G-GL (deg (f), C) be as above, and let

H(T)=I--tr(a)T= det(1--pTny(’)
=1

be the canonical expansion as in [4-I] and [5-1I], where p runs over irre-
ducible representations o G and (n, p) are inductively constructed rational
integers; in this special case we moreover have an explicit formula for
(n, p) which shows that (n, p) are non-negative and, (n, p) deg (p)=n- , l(n/m)(deg (f)).

Let p(f) be the maximal prime divisor of D(f).
Theorem A2. For each integer Mmax (p(f), deg (f)) we have

C(f)= ]-[ (1--N(p, f)p-)(1--p-)-() [ L(n, E, p)-(.)
p< (n,p):O,)

where
L(s, E, p)= ]-[ det (1-p(a(p))p-)-.

>
Pro.of. This follows rom Theorem A1 (2) with trivial estimations

showing that the above product converges absolutely (and moreover
rapidly). Q.E.D.
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For f(X)=f(X)...f(X) and K, as in the proof of Theorem A1 we
define (s, f)---- ]-[ [__ (s, K,).

Theorem A:. Let f(X) and g(X) be separable primitive polynomials
in Z[X]. Suppose that Z(s, f)=Z(s, g), which is equivalent to. N(p, f)=
N(p, g) for all p. Then We have C(f)--C(g), r(f)=r(g) and (s, f)=(s, g).

Proof. Let K(f) and K(g) denote the splitting fields o f and g over
Q respectively, and put K=K(f)K(g) and G=Gal(K/Q). Then N(p, f)=
tr (az(a(p))) and N(p, g)=tr (a(c(p))) for pXD(f)D(g) with

a’G >GL (deg (f), C), a "G >GL (deg (g), C)
and the Frobenius conjugacy class c(p) e Conj (G). Hence the Chebotarev
density theorem implies af-a, so (s, f)=L(s, a)=L(s, a)=(s, g) where
L(s, az) and L(s, a) denote Artin L-unctions containing ramified factors.

Q.E.D.
Remark A:. Let f(X)--f(X)...f(X) be as in the proof of Theorem

A1. Put (t, f)--- #{1n t f(n) are prime elements in Z or all i}. Then
the Hardy-Littlewood conjecture states that

(t, f) C(f) ____t as
I-I, deg (f,) (log t)

when C(f):/:0 (otherwise (t, f) is constant for large t).
Remark A4. Let f(X)--X(X+ 2) (X + 4) and g(X) (X + 4) (X2+ 2)

(X--2). Then Z(s, f)--Z(s, g) and (s, f)--(s)(s, Q(/--z, -))_=
(s, Q(/- 1))5(s, Q(/2))(s, Q(4-))--(s, g). In this ease 1-[, deg (f,)-4
ve8= I-[, deg (g,).

Remark AS. For a commutative ring A finitely generated over Zand

f(X, ..., Xn) A[X,, ", Xn] define Z(s, f)- I-[ (1--N(p, f)N(p)-) where
p runs over all maximal ideals of A, N(p)-(A/p), and

N(p, f)= {(xl, ..., xn) e (A/p); f(x, ..., x)--0}
withf denoting the reduction modulo p. Then considerations similar to
the above ones are possible partially.

Above considerations are concentrated on a truncated spatial zeta
unction Z(s, f) o the one dimensional arithmetic space M(f), but special
values of zeta unctions o "non-arithmetical" spaces are also interesting.

As an example we note the ollowing simple act. Let M be a compact
Riemann surface of negative Euler-Poincar characteristic ;(M). Let
(s, M)= [[p (1--N(p)-S) -1 be the zeta unction o M as in [4] and [5] where
p runs over all prime closed geodesics on M and N(p)=exp (length (p)).

Theorem S. (, M) is meromorphic on C with the functional equation
(s, M)(-- s, M) (2 sin =s)z(’).

Pro.of. Let
go(s, M)= 1-[ ]-[ (1 N(p)-- )

p k=0

denote the original Selberg zeta function of M constructed by Selberg [8],
which is the "0-dimensional part" of (s, M). Then

( i: )Zo(s, M)= ZI(--s, M) exp --2;(M) v tan =vdv
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with ZI(s, M)-- Zo(s+ 1, M). Hence using {(s, M)- Z,(s, M) / Zo(s, M) (this
being an example of EP decomposition below), we see

(s, M){(-- s, M) (Z(-- s, M) / Zo(s, M))(Z,(s, M)/ Zo(-- s, M))

(2 sin us)z). Q.E.D.
This "too simple" functional equation is naturally seen from the view

point of multiple (spatial) zeta unctions indicated in [5-I] suggesting that
Euler products (EP) would have Euler-Poincar (EP) decompositions.
Functional equations o this type hold also for some higher dimensional
cases replacing (S, M)(-s, M) by (s, M)5(a-s, M)(-)dim() in general. In
the case of the m-ple Riemann zeta function (s), the functional equation
concerns (s)(m-- s) (-).

Remark S. Basically (s, M) describes the closed strings (or
"morphisms") we refer to Schwarz [7] for the role of (closed) strings in
the SST description o the Universe U. It seems that the nature of 5(s, U)
is quite interesting containing the behaviour under the "compactification",
zeros, poles, special values
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