67. On the Generators of Exponentially Bounded C-semigroups

By Isao MIYADERA Department of Mathematics, Waseda University

(Communicated by Kôsaku YOSIDA, M. J. A., Sept. 12, 1986)

1. Introduction. Let X be a Banach space, and let $C: X \to X$ be an injective bounded linear operator with dense range. According to Davies and Pang [1], we say that $\{S(t): t \ge 0\}$ is an *exponentially bounded C-semi*group if $S(t): X \to X$, $0 \le t < \infty$, is a family of bounded linear operators satisfying

(1.1) S(t+s)C = S(t)S(s) for $t, s \ge 0$, and S(0) = C,

(1.2) for every $x \in X$, S(t)x is continuous in $t \ge 0$,

Т

(1.3) there exist $M \ge 0$ and real a such that $||S(t)|| \le Me^{at}$ for $t \ge 0$.

For every $t \ge 0$, let T(t) be the closed linear operator defined by

$$U(t)x = C^{-1}S(t)x \quad \text{for } x \in D(T(t))$$

with $D(T(t)) = \{x \in X : S(t)x \in R(C)\}$. We define the operator G by $D(G) = \{x \in R(C) : \lim_{t \to 0^+} (T(t)x - x)/t \text{ exists}\}$

and

(1.4)
$$Gx = \lim_{t \to 0^+} (T(t)x - x)/t$$
 for $x \in D(G)$.

For every $\lambda > a$, define the bounded linear operator $L_{\lambda}: X \rightarrow X$ by

(1.5)
$$L_{\lambda}x = \int_{0}^{\infty} e^{-\lambda t} S(t)x \, dt \qquad \text{for } x \in X.$$

It is known that L_{λ} is injective and the closed linear operator Z defined by (1.6) $Zx = L_{\lambda}^{-1}(\lambda L_{\lambda} - C)x = (\lambda - L_{\lambda}^{-1}C)x$ for $x \in D(Z)$

with $D(Z) = \{x \in X : Cx \in R(L_{\lambda})\}$ is independent of $\lambda > a$. (See [1].) The operator Z will be called the generator of $\{S(t) : t \ge 0\}$.

Remark. If C=I (the identity on X), then every exponentially bounded C-semigroup is a C_0 -semigroup in the ordinary sense. In this case, (1.1) and (1.2) imply (1.3), and the generator Z coincides with G defined by (1.4) (see [2, 3]). However, these do not hold in general (see [1]).

The purpose of this paper is to prove the following theorems.

Theorem 1. Let $\{S(t):t\geq 0\}$ be an exponentially bounded C-semigroup satisfying $||S(t)|| \leq Me^{at}$, and let G be the operator defined by (1.4). Then G is closable and \overline{G} (the closure of G) is a densely defined linear operator in X satisfying the following conditions

- (a₁) $\lambda \overline{G}$ is injective for $\lambda > a$,
- (a₂) $D((\lambda \overline{G})^{-n}) \supset R(C)$ for $n \ge 1$ and $\lambda > a$,
- (a₃) $\|(\lambda \overline{G})^{-n}C\| \leq M/(\lambda a)^n$ for $n \geq 1$ and $\lambda > a$,
- (a₄) $(\lambda \overline{G})^{-1}Cx = C(\lambda \overline{G})^{-1}x$ for $x \in D((\lambda \overline{G})^{-1})$ and $\lambda > a$.

Theorem 2. If T is a densely defined closed linear operator in X

239

satisfying $(a_1)-(a_4)$ in Theorem 1, then the operator $C^{-1}TC$ with $D(C^{-1}TC) = \{x \in X : Cx \in D(T) \text{ and } TCx \in R(C)\}$ is the generator of an exponentially bounded C-semigroup $\{S(t) : t \ge 0\}$ satisfying $||S(t)|| \le Me^{at}$ for $t \ge 0$.

Corollary. Let Z be the generator of an exponentially bounded C-semigroup $\{S(t):t\geq 0\}$ and let G be the operator defined by (1.4). Then we have

$$Z = C^{-1} \overline{G} C,$$

where $D(C^{-1}\overline{G}C) = \{x \in X : Cx \in D(\overline{G}) \text{ and } \overline{G}Cx \in R(C)\}.$

These theorems give a generalization of the Hille-Yosida theorem.

2. Proof of Theorem 1. Throughout this section let Z be the generator of an exponentially bounded C-semigroup $\{S(t):t\geq 0\}$ satisfying $\|S(t)\|\leq Me^{at}$, and let G be the operator defined by (1.4).

The following (2.1) and (2.2) have been proved in [1]:

(2.1)
$$D(G)$$
 is dense in X and $G \subset Z$.

(2.2)
$$(\lambda - G)L_{\lambda}Cx = C^{2}x \quad \text{for } x \in X \text{ and } \lambda > a,$$

(2.2) $L_{\lambda}(\lambda-G)x = Cx$ for $x \in D(G)$ and $\lambda > a$.

Noting that G is closable and R(C) is dense in X, (2.2) implies

(2.3)
$$(\lambda - \overline{G})L_{\lambda}x = Cx \quad \text{for } x \in X \text{ and } \lambda > a,$$

 $L_{\lambda}(\lambda - G)x = Cx \quad \text{for } x \in D(G) \text{ and } \lambda > a.$

Proof of Theorem 1. (a₁) and (a₄) follow from (2.3). To prove (a₂) and (a₃), let $\lambda > a$. By (2.3) again, we obtain

(2.4) $D((\lambda - \vec{G})^{-n}) \supset R(C^n)$ and $(\lambda - \vec{G})^{-n} C^n z = (L_\lambda)^n z$ for $n \ge 1$ and $z \in X$. Since

$$(L_{\lambda})^n z = \int_0^\infty \cdots \int_0^\infty e^{-\lambda(t_1+\cdots+t_n)} S(t_1+\cdots+t_n) C^{n-1} z \, dt_1 \cdots dt_n,$$

 $\|(\lambda-\overline{G})^{-n}C^n z\| = \|(L_{\lambda})^n z\| \leq (M/(\lambda-a)^n) \|C^{n-1}z\|$ for $n \geq 1$ and $z \in X$. So that we have for every $n \geq 1$

(2.5)
$$\|(\lambda-\overline{G})^{-n}Cx\| \leq (M/(\lambda-a)^n) \|x\| \quad \text{for } x \in R(C^{n-1}).$$

Now, (2.4) and the closedness of \overline{G} imply

(2.6)
$$D((\lambda - \overline{G})^{-n}) \supset R(C) \text{ and}$$

 $(\lambda - \overline{G})^{-n}C$ is a bounded linear operator on X

for every $n \ge 1$. Indeed, by (2.4), (2.6) holds for n=1. Suppose that (2.6) is true for n=k. Let $x \in X$. Since $R(C^k)$ is dense in X, there are $x_m \in R(C^k)$ such that $x_m \to x$ as $m \to \infty$. Then

$$\lim_{m\to\infty} (\lambda - \overline{G})^{-k} C x_m = (\lambda - \overline{G})^{-k} C x$$

and by (2.5)

 $\|(\lambda-\overline{G})^{-(k+1)}Cx_p-(\lambda-\overline{G})^{-(k+1)}Cx_m\|\leq (M/(\lambda-a)^{k+1})\|x_p-x_m\|\to 0$

as $p, m \to \infty$ and hence $(\lambda - \overline{G})^{-1}[(\lambda - \overline{G})^{-k}Cx_m] = (\lambda - \overline{G})^{-(k+1)}Cx_m$ is convergent as $m \to \infty$. Since $(\lambda - \overline{G})^{-1}$ is closed we see that $(\lambda - \overline{G})^{-k}Cx \in D((\lambda - \overline{G})^{-1})$ i.e., $Cx \in D((\lambda - \overline{G})^{-(k+1)})$. Therefore $D((\lambda - \overline{G})^{-(k+1)}) \supset R(C)$, and $(\lambda - \overline{G})^{-(k+1)}C$ $= (\lambda - \overline{G})^{-1}(\lambda - \overline{G})^{-k}C$ is a closed linear operator on X and then it is bounded on X by the closed graph theorem. So (2.6) holds for n = k + 1.

Thus (a_2) is satisfied. (a_3) follows from (2.5) and (2.6) since $R(C^{n-1})$ is dense in X for every $n \ge 1$. Q.E.D.

No. 7]

3. Proof of Theorem 2 and Corollary. Throughout this section T denotes a densely defined closed linear operator in X satisfying $(a_1)-(a_4)$ in Theorem 1. It is easy to see that (a_4) is equivalent to the following

 $(a_4)'$ $Cz \in D(T)$ and TCz = CTz for $z \in D(T)$.

For every $\lambda > a$ and $t \ge 0$, define $S_{\lambda}(t) : X \rightarrow X$ by

 $S_{\lambda}(t)x = e^{-\lambda t} \sum_{n=0}^{\infty} (t^n \lambda^{2n}/n!)(\lambda - T)^{-n} Cx \quad \text{for } x \in X.$

By virtue of [1, Theorem 11], $\lim_{\lambda \to \infty} S_{\lambda}(t)x$ exists for every $x \in X$ and $t \ge 0$, and if we define S(t) for $t \ge 0$ by

(3.1) $S(t)x = \lim_{\lambda \to \infty} S_{\lambda}(t)x \quad \text{for } x \in X$

then $\{S(t): t \ge 0\}$ is an exponentially bounded *C*-semigroup satisfying $||S(t)|| \le Me^{at}$ for $t \ge 0$ and

(3.2)
$$(\lambda - T)^{-1}Cx = \int_0^\infty e^{-\lambda t} S(t)x \, dt \quad \text{for } x \in X \text{ and } \lambda > a.$$

By $(a_4)'$, $S_{\lambda}(t)z \in D(T)$ and $TS_{\lambda}(t)z = S_{\lambda}(t)Tz$ for $z \in D(T)$, $t \ge 0$ and $\lambda > a$, and hence the closedness of T implies

(3.3) $S(t)z \in D(T)$ and TS(t)z = S(t)Tz for $z \in D(T)$ and $t \ge 0$.

Lemma. If Z is the generator of $\{S(t) : t \ge 0\}$, then $T \subseteq Z$ and $Cx \in D(T)$ and TCx = CZx for $x \in D(Z)$.

Proof. $T \subset Z$ has been proved in [1, Remark after Theorem 13]. Let $\lambda > a$. For $x \in X$, $(\lambda - T)L_{\lambda}x = Cx$ by (3.2), and $(\lambda - Z)L_{\lambda}x = Cx$ by (2.3) and $Z \supset \overline{G}$, where G is defined by (1.4). Therefore we have

 $TL_{\lambda}x = ZL_{\lambda}x \quad \text{for } x \in X.$

Now, let $x \in D(Z)$. By (3.4) and $ZL_{\lambda}x = L_{\lambda}Zx$

 $T(\lambda L_{\lambda}x) = \lambda L_{\lambda}Zx$ for $\lambda > a$.

Since $\lambda L_{\lambda}x \rightarrow Cx$ and $\lambda L_{\lambda}Zx \rightarrow CZx$ as $\lambda \rightarrow \infty$, the closedness of T implies that $Cx \in D(T)$ and TCx = CZx. Q.E.D.

Proof of Theorem 2. We want to show that $C^{-1}TC$ is the generator of $\{S(t):t\geq 0\}$. Set $T'=C^{-1}TC$. Then $T'\supset T$ by $(a_i)'$, and hence it is easily seen that T' is a densely defined closed linear operator satisfying $(a_1)-(a_i)$. Therefore we can construct an exponentially bounded *C*-semigroup $\{S(t)':t\geq 0\}$ by

 $S(t)'x = \lim_{\lambda \to \infty} e^{-\lambda t} \sum_{n=0}^{\infty} (t^n \lambda^{2n} / n!) (\lambda - T')^{-n} Cx$

for $x \in X$ and $t \ge 0$. Since $(\lambda - T')^{-n}C = (\lambda - T)^{-n}C$ $(n \ge 0, \lambda > a)$ by $T' \supset T$, we see that S(t)' = S(t) for $t \ge 0$. Let Z be the generator of $\{S(t) : t \ge 0\}$ $(=\{S(t)': t \ge 0\})$. By virtue of Lemma, $T' \subset Z$, and if $x \in D(Z)$ then $Cx \in D(T)$ and $TCx = CZx \in R(C)$ i.e., $x \in D(T')$. So that $T' \subset Z$ and $D(Z) \subset D(T')$, and hence T' = Z. Q.E.D.

Proof of Corollary. Since \overline{G} is a densely defined closed linear operator in X satisfying $(a_i)-(a_i)$ by Theorem 1, it follows from Theorem 2 that $C^{-1}\overline{G}C$ is the generator of an exponentially bounded C-semigroup $\{S(t)': t \ge 0\}$ defined by

 $S(t)'x = \lim_{\lambda \to \infty} e^{-\lambda t} \sum_{n=0}^{\infty} (t^n \lambda^{2n} / n!) (\lambda - \overline{G})^{-n} Cx$ for $x \in X$ and $t \ge 0$. It has been proved in [1, Theorems 10 and 13] that Z is a densely defined closed linear operator in X satisfying $(a_1)-(a_4)$ and

I. MIYADERA

 $\begin{array}{ll} S(t)x = \lim_{\lambda \to \infty} e^{-\lambda t} \sum_{n=0}^{\infty} (t^n \lambda^{2n} / n!) (\lambda - Z)^{-n} Cx & \text{for } x \in X \text{ and } t \geq 0. \\ \text{Since } \overline{G} \subset Z, \text{ we see that } (\lambda - \overline{G})^{-n} Cx = (\lambda - Z)^{-n} Cx \text{ for } x \in X, n \geq 0 \text{ and} \\ \lambda > a. \text{ So that } S(t) = S(t)' \text{ and hence } Z = C^{-1} \overline{G} C. & \text{Q.E.D.} \end{array}$

Remark. The following is also proved: A linear operator Z is the generator of an exponentially bounded C-semigroup $\{S(t):t\geq 0\}$ with $||S(t)||\leq Me^{at}$ if and only if Z is a densely defined closed operator satisfying $(a_1)-(a_4)$ in Theorem 1 and $\{x \in X: Cx \in D(Z) \text{ and } ZCx \in R(C)\} \subset D(Z)$.

Added in Proof. 1) Corollary can be directly proved without making use of Theorems 1 and 2. 2) For simplicity, we say that \overline{G} is the C-c.i.g. of $\{S(t): t \ge 0\}$. Recently, Mr. Tanaka has given a characterization for the C-c.i.g. of an exponentially bounded C-semigroup (to appear in Tokyo J. Math.). By using this result we can generate semigroups of the basic classes, such as (1, A), (0, A), $(C_{(k)})$ and growth order α , in a unified way. The details will be published elsewhere.

References

- [1] E. B. Davies and M. M. H. Pang: The Cauchy problem and a generalization of the Hille-Yosida theorem (to appear).
- [2] E. Hille and R. S. Phillips: Functional Analysis and Semi-Groups. Amer. Math. Soc. Coll. Publ., vol. 31 (1957).
- [3] K. Yosida: Functional Analysis. 6th ed., Springer-Verlag (1980).