61. Class Number Relations of Algebraic Tori. I

By Shin-ichi Katayama
Department of Mathematics, Kyoto University
(Communicated by Shokichi Iyanaga, m. J. A., June 10, 1986)

Let k be an algebraic number field of finite degree and \mathfrak{p} be a place of k. We denote by k_{p} the completion of k at the place p. O_{p} denotes the ring of \mathfrak{p}-adic integers when \mathfrak{p} is non-archimedean, and $k_{\mathfrak{p}}$ when \mathfrak{p} is archimedean. Thus $U_{k}=\prod_{p} O_{p}^{\times}$is a subgroup of the idele group k_{A}^{\times}. Let T be a torus defined over k and $\hat{T}=\operatorname{Hom}\left(T, G_{m}\right)$ be the character module of T. We denote by $T(k)$ the group of k-rational points of T, and by $T\left(k_{p}\right)$ the group of k_{p}-rational points of $T . \quad T\left(O_{p}\right)$ denotes the unique maximal compact subgroup of $T\left(k_{p}\right)$ when \mathfrak{p} is non-archimedean, and $T\left(k_{p}\right)$ when \mathfrak{p} is archimedean. We put $T\left(U_{k}\right)=\prod_{p} T\left(O_{p}\right), T\left(O_{k}\right)=T\left(U_{k}\right) \cap T(k)$ and denote the adele group of T over k by $T\left(k_{A}\right)$. Then $T\left(U_{k}\right)$ is a subgroup of $T\left(k_{A}\right)$. The class number of T over k is defined by

$$
h(T)=\left[T\left(k_{A}\right): T(k) \cdot T\left(U_{k}\right)\right] .
$$

Consider the exact sequence of algebraic tori defined over k
(1)

$$
0 \longrightarrow T^{\prime} \xrightarrow{\alpha} T \xrightarrow{\mu} T^{\prime \prime} \longrightarrow 0,
$$

where α and μ are defined over k.
Recently, T. Ono treated the case when $T=R_{K / k}\left(G_{m}\right)$ and $T^{\prime \prime}=G_{m}$ in (1), where K is a finite Galois extension of k and $R_{K / k}$ is the Weil map. In his paper [3], he defined the number $E(K / k)$ by $h\left(R_{K / k}\left(G_{m}\right)\right) / h\left(T^{\prime}\right) \cdot h\left(G_{m}\right)$ and obtained an equality between $E(K / k)$ and some elementary cohomological invariants of K / k in [4], [5].

In this paper, we shall obtain a similar equality between $h(T) / h\left(T^{\prime}\right)$ - $h\left(T^{\prime \prime}\right)$ and some cohomological invariants. Moreover, we shall define a number $E^{\prime}(K / k)$ for any finite Galois extension K / k and investigate the relation between $E(K / k)$ and $E^{\prime}(K / k)$.

The author would like to express his hearty thanks to Prof. T. Ono who kindly suggested to him the definition and the importance of the number $E^{\prime}(K / k)$.

Let A, B be commutative groups and λ be a homomorphism from A to B. If $\operatorname{Ker} \lambda, \operatorname{Cok} \lambda$ are finite, we define the q-symbol of λ by $q(\lambda)=[\operatorname{Cok} \lambda]$ $/[\operatorname{Ker} \lambda]$. Let $\lambda: T \rightarrow T^{\prime}$ be a k-isogeny of algebraic tori. Then λ induces the following natural homomorphisms

$$
\begin{aligned}
& \hat{\lambda}(k): \hat{T}^{\prime}(k) \longrightarrow \hat{T}(k), \\
& \lambda\left(O_{p}\right): T\left(O_{p}\right) \longrightarrow T^{\prime}\left(O_{p}\right), \\
& \lambda\left(O_{k}\right): T\left(O_{k}\right) \longrightarrow T^{\prime}\left(O_{k}\right) .
\end{aligned}
$$

Here $\hat{T}(k)$ denotes the submodule of \hat{T} consisting of rational characters defined over k. Then one knows

Lemma (Shyr [6], Theorem 2).

$$
\frac{h\left(T^{\prime}\right)}{h(T)}=\frac{\tau\left(T^{\prime}\right) q\left(\lambda\left(O_{k}\right)\right) q(\hat{\lambda}(k))}{\tau(T) \prod_{\mathfrak{p}} q\left(\lambda\left(O_{\mathfrak{p}}\right)\right)},
$$

where $\tau(T), \tau\left(T^{\prime}\right)$ are the Tamagawa numbers of T, T^{\prime}.
Corollary. For any k-isogeny $\gamma: T \longrightarrow T$, we have

$$
1=\frac{q\left(\gamma\left(O_{k}\right)\right) q(\hat{r}(k))}{\prod_{\mathfrak{p}} q\left(\gamma\left(O_{\mathfrak{p}}\right)\right)}
$$

For any $T, T^{\prime}, T^{\prime \prime}$ in (1), one can take a homomorphism $\beta: T \longrightarrow T^{\prime}$ defined over k, such that $\lambda=\beta \times \mu: T \longrightarrow T^{\prime} \times T^{\prime \prime}$ and $\gamma=\beta \cdot \alpha: T^{\prime} \longrightarrow T^{\prime}$ are k-isogenies. From Lemma, we have

$$
\frac{h(T) \tau\left(T^{\prime}\right) \tau\left(T^{\prime \prime}\right)}{\tau(T) h\left(T^{\prime}\right) h\left(T^{\prime \prime}\right)}=\frac{\prod_{\mathfrak{p}} q\left(\lambda\left(O_{\mathfrak{p}}\right)\right)}{q(\hat{\lambda}(k)) q\left(\lambda\left(O_{k}\right)\right)} .
$$

Let K be the splitting field of $T, T^{\prime}, T^{\prime \prime}$ and G be $\operatorname{Gal}(K / k)$. Then, from the exact sequence (1), we have an exact sequence of G-modules

$$
\begin{equation*}
0 \longrightarrow T^{\prime}\left(O_{K}\right) \longrightarrow T\left(O_{K}\right) \longrightarrow T^{\prime \prime}\left(O_{K}\right) \longrightarrow 0 . \tag{2}
\end{equation*}
$$

Hence we have the following exact sequence derived from (2)

$$
\begin{align*}
0 \longrightarrow T^{\prime}\left(O_{k}\right) \xrightarrow{\alpha\left(O_{k}\right)} T\left(O_{k}\right) \xrightarrow{\mu\left(O_{k}\right)} T^{\prime \prime}\left(O_{k}\right) \tag{3}\\
\longrightarrow H^{1}\left(G, T^{\prime}\left(O_{K}\right)\right) \longrightarrow H^{1}\left(G, T\left(O_{K}\right)\right) \longrightarrow \cdots .
\end{align*}
$$

From this exact sequence, we have
$\left[\operatorname{Cok} \lambda\left(O_{k}\right)\right]=\left[\operatorname{Ker}\left(H^{1}\left(G, T^{\prime}\left(O_{K}\right)\right) \longrightarrow H^{1}\left(G, T\left(O_{K}\right)\right)\right)\right]\left[\operatorname{Cok} \gamma\left(O_{k}\right)\right]$,
$\left[\operatorname{Ker} \lambda\left(O_{k}\right)\right]=\left[\operatorname{Ker} \gamma\left(O_{k}\right)\right]$.
Therefore we have

$$
q\left(\lambda\left(O_{k}\right)\right)=q\left(\gamma\left(O_{k}\right)\right)\left[\operatorname{Ker}\left(H^{1}\left(G, T^{\prime}\left(O_{K}\right)\right) \longrightarrow H^{1}\left(G, T\left(O_{K}\right)\right)\right)\right]
$$

In the same way as above, we obtain $q\left(\lambda\left(O_{\mathfrak{p}}\right)\right)=q\left(\gamma\left(O_{\mathfrak{p}}\right)\right)\left[\operatorname{Ker}\left(H^{1}\left(G_{\mathfrak{\Re}}, T^{\prime}\left(O_{\mathfrak{\beta}}\right)\right)\right.\right.$ $\rightarrow H^{1}\left(G_{\mathfrak{\Re}}, T\left(O_{\mathfrak{\beta}}\right)\right)$)] (for all \mathfrak{p}), where \mathfrak{P} is an extension of \mathfrak{p} to K and $G_{\mathfrak{ß}}$ is the decomposition group of \mathfrak{B}. Hence

$$
\frac{h(T) \tau\left(T^{\prime}\right) \tau\left(T^{\prime \prime}\right)}{\tau(T) h\left(T^{\prime}\right) h\left(T^{\prime \prime}\right)}=\frac{\prod_{\mathfrak{p}} q\left(\gamma\left(O_{\mathfrak{p}}\right)\right)\left[\operatorname{Ker}\left(H^{1}\left(G_{\mathfrak{F}}, T^{\prime}\left(O_{\mathfrak{F}}\right)\right) \longrightarrow H^{1}\left(G_{\mathfrak{F}}, T\left(O_{\mathfrak{F}}\right)\right)\right)\right]}{q(\hat{\lambda}(k)) q\left(\gamma\left(O_{k}\right)\right)\left[\operatorname{Ker}\left(H^{1}\left(G, T^{\prime}\left(O_{K}\right)\right) \longrightarrow H^{1}\left(G, T\left(O_{K}\right)\right)\right)\right]} .
$$

By virtue of Corollary, we have
Theorem. With the notations and assumptions as above, we have $\frac{h(T) \tau\left(T^{\prime}\right) \tau\left(T^{\prime \prime}\right)}{\tau(T) h\left(T^{\prime}\right) h\left(T^{\prime \prime}\right)}=\frac{q(\hat{\gamma}(k)) \prod_{\mathfrak{n}}\left[\operatorname{Ker}\left(H^{1}\left(G_{\mathfrak{\Re}}, T^{\prime}\left(O_{\mathfrak{B}}\right)\right) \longrightarrow H^{1}\left(G_{\mathfrak{R}}, T\left(O_{\mathfrak{B}}\right)\right)\right)\right]}{q(\hat{\lambda}(k))\left[\operatorname{Ker}\left(H^{1}\left(G, T^{\prime}\left(O_{K}\right)\right) \longrightarrow H^{1}\left(G, T\left(O_{K}\right)\right)\right)\right]}$.
Remark. We can regard the formula of T. Ono [4] as a special case of this theorem when $T=R_{K / k}\left(G_{m}\right), T^{\prime \prime}=G_{m}$ and $T^{\prime}=R_{K / k}^{(1)}\left(G_{m}\right)$.
Let K be a finite Galois extension of k again. There exists an exact sequence of algebraic tori defined over k
(4)

$$
0 \longrightarrow G_{m} \longrightarrow R_{K / k}\left(G_{m}\right) \longrightarrow R_{K / k}\left(G_{m}\right) / G_{m} \longrightarrow 0
$$

We denote by $h_{K / k}^{\prime}$ the class number of the torus $R_{K / k}\left(G_{m}\right) / G_{m}$. We shall define the positive rational number $E^{\prime}(K / k)$ by

$$
E^{\prime}(K / k)=\frac{h_{K}}{h_{k} h_{K / k}^{\prime}}
$$

where h_{K} and h_{k} are the class numbers of the fields K and k, respectively. By virtue of the fact that $h\left(R_{K / k}\left(G_{m}\right)\right)=h_{K}$ and $h\left(G_{m}\right)=h_{k}$ and our Theorem,
we have

$$
E^{\prime}(K / k)=\frac{\prod_{\bullet}\left[H^{1}\left(G_{\mathfrak{\Re}}, O_{\Re}^{\times}\right)\right]}{\left[H^{1}\left(G, O_{K}^{\times}\right)\right]}=\frac{\left[H^{1}\left(G, U_{K}\right)\right]}{\left[H^{1}\left(G, O_{K}^{\times}\right)\right]} .
$$

It seems to be an interesting problem to investigate the relation of two rational numbers $E(K / k)$ and $E^{\prime}(K / k)$. When K / k is cyclic, it is easy to show $E(K / k)=E^{\prime}(K / k)$. One can verify it by calculating the Herbrand quotients of O_{K}^{\times}and U_{K}. But $E^{\prime}(K / k)$ is not always equal to $E(K / k)$. For example, consider the case when k is an imaginary quadratic field with the class number greater than one, and K is its Hilbert class field. Then we have

$$
\frac{E^{\prime}(K / k)}{E(K / k)}=\frac{\left[O_{K}^{\times}: N_{K / k} O_{K}^{\times}\right]}{\left[H^{3}(G, Z)\right]} \leqq \frac{2}{\left[H^{3}(G, Z)\right]}
$$

From Lyndon's formula, $\left[H^{3}(G, Z)\right]>2$ for any abelian group having noncyclic p-Sylow subgroup ($p \neq 2$). As is well known, there exist infinitely quadratic fields which have the ideal class groups of p-rank greater than 2. Therefore $E^{\prime}(K / k)<E(K / k)$ in these cases.

References

[1] T. Ono: Arithmetic of algebraic tori. Ann. of Math., 74, 101-139 (1961).
[2] -: On the Tamagawa number of algebraic tori. ibid., 78, 47-73 (1963).
[3] --: A generalization of Gauss' theorem on the genera of quadratic forms. Proc. Japan Acad., 61A, 109-111 (1985).
[4] -: On some class number relations for Galois extensions. ibid., 61A, 311-312 (1985).
[5] -: On some class number relations for Galois extensions (preprint).
[6] Jih-Min Shyr: On some class number relations of algebraic tori. Michigan Math. J., 24, 365-377 (1977).

