55. On Some Integral Invariants on Complex Manifolds. I

By Shigetoshi BANDO^{*)} and Toshiki MABUCHI^{**)}

(Communicated by Kunihiko KODAIRA, M. J. A., May 12, 1986)

This note is a continuation of our preceding works (cf. Bando [1], Mabuchi [8]) and we here explain how Futaki invariants (cf. Futaki [5], Futaki and Morita [6]) are generalized and reinterpreted from our viewpoints. Most of the proofs down below are very sketchy and a complete account including the present results will be given in a separate paper [2].

(1) Fix an arbitrary compact complex r-dimensional connected manifold X. Let $G := \operatorname{Aut}(X)$ be the group of all holomorphic automorphisms of X and $G^{\circ} := \operatorname{Aut}^{\circ}(X)$ be its identity component. We denote by \mathcal{CV}_{X} the set of all volume forms Ω on X such that $\int_{X} \Omega = 1$. Now, to each pair $(\Omega', \Omega'') \in \mathcal{CV}_{X} \times \mathcal{CV}_{X}$, we associate the real number $N_{X}(\Omega', \Omega'') \in \mathbb{R}$ by

$$N_{X}(\Omega', \Omega'') := \int_{a}^{b} dt \int_{X} \{(\sqrt{-1}/2\pi)\bar{\partial}\partial \log(\Omega_{t})\}^{r} (\partial\Omega_{t}/\partial t)/\Omega_{t},$$

where $\{\Omega_t | a \leq t \leq b\}$ is an arbitrary piecewise smooth path in \mathcal{V}_x such that $\Omega_a = \Omega'$ and $\Omega_b = \Omega''$. Then by a result of Donaldson [4; Proposition 6] applied to the anti-canonical bundle K_x^{-1} of X, the number $N_x(\Omega', \Omega'')$ above is independent of the choice of the path $\{\Omega_t | a \leq t \leq b\}$ and therefore well-defined. Furthermore, N_x is G-invariant, i.e.,

 $N_x(g^*\Omega', g^*\Omega'') = N_x(\Omega', \Omega'')$ for all $g \in G$ and all $\Omega', \Omega'' \in \mathcal{O}_x$, and satisfies the 1-cocycle condition, i.e.,

(i) $N_x(\Omega', \Omega'') + N_x(\Omega'', \Omega') = 0$ and

(ii) $N_{\mathcal{X}}(\Omega, \Omega') + N_{\mathcal{X}}(\Omega', \Omega'') + N_{\mathcal{X}}(\Omega'', \Omega) = 0$,

for all $\Omega, \Omega', \Omega'' \in \mathcal{O}_x$. We now fix an arbitrary element Ω_0 of \mathcal{O}_x , and define a functional $\nu_x : \mathcal{O}_x \to \mathbf{R}$ by

$$\nu_{X}(\Omega):=N_{X}(\Omega_{0},\Omega), \qquad \Omega\in \mathcal{CV}_{X}.$$

We moreover set

$$n_{X}(g) := \exp(\nu_{X}(g^{*}\Omega_{0})), \qquad g \in G.$$

Then the same argument as in $[8; \S 5]$ easily allows us to obtain :

Proposition A. (i) $n_x: G \to \mathbf{R}_+$ is a Lie group homomorphism which does not depend on the choice of Ω_0 , where \mathbf{R}_+ denotes the group of positive real numbers. In particular, n_x is trivial on [G, G].

(ii) Let $\lambda := c_1(X)^r[X]$. Then $\Omega \in \mathbb{CV}_X$ is a critical point of ν_X if and only if $\{(\sqrt{-1}/2\pi)\bar{\partial}\partial \log(\Omega)\}^r = \lambda \Omega$, i.e., $(\sqrt{-1}/2\pi)\bar{\partial}\partial \log(\Omega)$ is a (possibly indefinite) Einstein form.

^{*)} Mathematical Institute, Tohoku University.

^{**&#}x27; Max-Planck-Institut für Mathematik, Bonn, B.R.D. and College of General Education, Osaka University.

(iii) Let H be a subgroup of G such that both $H \supset G^0$ and $[H:G^0] < +\infty$ are satisfied. Then if ν_x has a critical point on $\mathbb{C}V_x$, the restriction $n_{X|H}$ of n_x to H is trivial. In particular, if K_x^{-1} is ample and ν_x has a critical point on $\mathbb{C}V_x$, then n_x is trivial.

Note that the twistor space of a compact quaternionic Kähler manifold of negative scalar curvature is a compact complex manifold with a natural indefinite Einstein form (cf. Salamon [9]).

(II) We next assume that X is a compact connected r-dimensional Kähler manifold with Kähler form ω_0 , where ω_0 is so normalized that $\int_{-\infty}^{\infty} r dt = W_0 then put$

 $\int_{v} \omega_0^r = 1$. We then put

 $\begin{aligned} &\mathcal{K} := \{ \text{K\"ahler forms on } X \text{ cohomologous to } \omega_0 \}, \\ &\omega_0(\psi) := \omega_0 + \sqrt{-1} \partial \bar{\partial} \psi, \qquad \psi \in C^{\infty}(X)_R, \\ &\mathcal{H} := \{ \psi \in C^{\infty}(X)_R | \omega_0(\psi) \in \mathcal{K} \}. \end{aligned}$

For each holomorphic vector field $v \in \Gamma(X, \mathcal{O}(TX))$ on X, we denote by L_v (resp. \mathcal{V}_v) the Lie derivative (resp. covarian; derivative in terms of the Kähler metric ω_0) with respect to v, where we use Kähler forms and the corresponding Kähler metrics interchangeably. Furthermore, for each $\omega \in \mathcal{K}$, let $c_i(\omega)$ be the *i*-th Chern form of the Kähler metric ω . Then the "Futaki invariants" of X are regarded as the linear map

$$F\langle c_1^{r+1}\rangle: \Gamma(X, \mathcal{O}(TX)) \longrightarrow \mathbb{R}$$

defined by

$$F\langle c_1^{r+1}\rangle(v) := 2 \operatorname{Re} \int_X \operatorname{Tr} (L_v - \nabla_v) c_1(\omega_0)^r, \qquad v \in \Gamma(X, \mathcal{O}(TX)),$$

where $\operatorname{Tr}(L_v - \mathcal{V}_v) \in C^{\infty}(X)_C$ denotes the trace of the C^{∞} section $L_v - \mathcal{V}_v$ of the vector bundle End (TX) over X (cf. Futaki and Morita [6], Berline and Vergne [3]). Now, in view of a theorem of Lichnerowicz (see for instance [7; p. 94]), we can without difficulty show that :

Proposition B. (i) $-F\langle c_1^{r+1}\rangle$ is nothing but the Lie algebra homomorphism associated with the Lie group homomorphism $n_x: G \to \mathbb{R}_+$.

(ii) $\tilde{\omega} \in \mathcal{K}$ is a critical point for the functional $\mathcal{K} \ni \omega \mapsto \nu_x(\omega^r) \in \mathbf{R}$ if and only if $\tilde{\omega}$ is an Einstein-Kähler form.

Fix an arbitrary $p \in \mathbb{Z}$ with $0 \leq p \leq r$ and let

$$R_p:=\int_X c_p(X) \wedge \omega_0^{r-p}.$$

Now, to each pair $(\omega', \omega'') \in \mathcal{K} \times \mathcal{K}$, we associate a real number $M_p(\omega', \omega'')$ by

$$M_p(\omega', \omega'') := \int_a^b \left\{ \int_X (\partial \psi_t / \partial t) (c_p(w_t) \wedge \omega_t^{r-p} - \lambda_p \omega_t^r) \right\} dt,$$

where $\{\psi_t | a \leq t \leq b\}$ is an arbitrary piecewise smooth path in \mathcal{H} such that $\omega_t := \omega_0(\psi_t)$ satisfies the boundary conditions $\omega_a = \omega'$ and $\omega_b = \omega''$. Then

Theorem C. $M_p(\omega', \omega'')$ above is independent of the choice of the path $\{\psi_t | a \leq t \leq b\}$ and therefore well-defined. Furthermore, M_p is G-invariant and also satisfies the 1-cocycle condition.

Proof. Let $\{\psi_{s,t}\}$ be a smooth two-parameter family of functions $\psi_{s,t}$ in \mathcal{H} , and $\theta_{s,t}$ be the curvature form of the Kähler metric $\omega_{s,t} := \omega_0(\psi_{s,t})$.

Then $c_p(\omega_{s,t})$ is written as $P_{s,t} := P(\theta_{s,t})$ for some invariant polynomial P of degree p. Now, in view of [8; § 2], it suffices to show

$$\int_{\mathcal{X}} (\partial \psi_{s,t} / \partial s) (\partial / \partial t) \{ P_{s,t} \wedge \omega_{s,t}^{r-p} \} = \int_{\mathcal{X}} (\partial \psi_{s,t} / \partial t) (\partial / \partial s) \{ P_{s,t} \wedge \omega_{s,t}^{r-p} \}.$$

But then, this easily follows from integral by parts by virtue of an argument in [1].

Definition. We define a subgroup $G_{\mathcal{X}}$ of $G (= \operatorname{Aut}(X))$ by

 $G_{\mathcal{K}} := \{g \in \operatorname{Aut}(X) \mid g^* \mathcal{K} = \mathcal{K}\} \quad (\supset G^\circ).$

Furthermore, put as follows:

$$\begin{split} \mu_p(\omega) &:= M_p(\omega_0, \omega) & \omega \in \mathcal{K}, \\ m_p(g) &:= \exp\left(\mu_p(g^*\omega_0)\right), & g \in G_{\mathcal{K}}. \end{split}$$

Now, just by the same argument as in deriving Proposition A, we obtain:

Theorem D. (i) $m_p: G_{\mathcal{X}} \to \mathbf{R}_+$ is a Lie group homomorphism which does not depend on the choice of ω_0 . In particular, m_p is trivial on $[G_{\mathcal{X}}, G_{\mathcal{X}}]$.

(ii) $\tilde{\omega} \in \mathcal{K}$ is a critical point for the functional $\mu_p : \mathcal{K} \to \mathbf{R}$ if and only if $c_p(\tilde{\omega}) \wedge \tilde{\omega}^{r-p} = \lambda_p \tilde{\omega}^r$.

(iii) Let H be a subgroup of $G_{\mathcal{K}}$ such that both $H \supset G^0$ and $[H:G^0] < +\infty$ are satisfied. Then if μ_p has a critical point on \mathcal{K} , the restriction $m_{p|H}$ of m_p to H is trivial. In particular, if K_x^{-1} is ample and μ_p has a critical point on \mathcal{K} , then m_p is trivial.

Let $H\phi_0$ be the harmonic part of $\phi_0 := c_p(\omega_0)$ in terms of the Kähler metric ω_0 . Then there exists a real C^{∞} (p-1, p-1)-form F_0 an X such that

$$\phi_0 - H\phi_0 = \sqrt{-1}\partial\bar{\partial}F_0.$$

We now put (cf. Bando [1])

$$\beta_p(v) := \operatorname{Re} \int_X (L_v F_0) \wedge \omega_0^{r-p+1}, \qquad v \in \Gamma(X, \mathcal{O}(TX)).$$

In view of [1] and [8; § 5], one immediately sees that:

Theorem E. $\{-2/(r-p+1)\}\beta_p: \Gamma(X, \mathcal{O}(TX)) \rightarrow \mathbf{R} \text{ is nothing but the Lie algebra homomorphism associated with the Lie group homomorphism } m_p: G_{\mathcal{K}} \rightarrow \mathbf{R}_+.$

Note that the \mathcal{K} -energy map defined in [8] coincides with μ_1 above up to constant multiple and that β_1 is the "Futaki invariants" of X.

We finally wish to thank Dr. R. Kobayashi for helpful and stimulating conversations. Our gratitudes are due also to the Max-Planck-Institut für Mathematik for the hospitality and constant assistance all through the stay of the last named author in Bonn.

References

- [1] S. Bando: An obstruction for Chern class forms to be harmonic (preprint).
- [2] S. Bando and T. Mabuchi: On some integral invariants on complex manifolds (II) (to appear).
- [3] N. Berline and M. Vergne: Zeros d'un champ de vecteurs et classes character-

istiques équivariantes. Duke Math. J., 50, 539-549 (1983).

- [4] S. K. Donaldson: Anti-self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles. Proc. London Math. Soc., 50, 1-26 (1985).
- [5] A. Futaki: An obstruction to the existence of Einstein Kähler metrics. Invent. Math., 73, 437-443 (1983).
- [6] A. Futaki and S. Morita: Invariant polynomials on compact complex manifolds. Proc. Japan Acad., 60A, 369-372 (1984).
- [7] S. Kobayashi: Transformation groups in differential geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete. vol. 70, Springer-Verlag, Berlin (1972).
- [8] T. Mabuchi: K-energy maps integrating Futaki invariants (to appear in Tohoku Math. J.).
- [9] S. Salamon: Quaternionic Kähler manifolds. Invent. Math., 67, 143-171 (1982).