49. The Aitken-Steffensen Formula for Systems of Nonlinear Equations. III

By Tatsuo Noda
Department of Applied Mathematics, Toyama Prefectural College of Technology
(Communicated by Kôsaku Yosida, m. J. A., May 12, 1986)

1. Introduction. Let $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ be a vector in R^{n} and D a region contained in R^{n}. Let $f_{i}(x)(1 \leqq i \leqq n)$ be real-valued nonlinear functions defined on D and $f(x)=\left(f_{1}(x), f_{2}(x), \cdots, f_{n}(x)\right)$ an n-dimensional vectorvalued function. Then we shall consider a system of nonlinear equations (1.1) $x=f(x)$, whose solution is \bar{x}.

As mentioned in [2], [3] and [4], Henrici [1, p. 116] has considered a formula, which is called the Aitken-Steffensen formula. Now, we have studied the above Aitken-Steffensen formula in [2] and [4], and shown [2, Theorem 2] and [4, Theorem 2]. Moreover, by considering the Steffensen iteration method, we have also shown [3, Theorem 1], which improves the result of [2, Theorem 2].

The purpose of this paper is to show Theorem 1 having a new relation different from [2, Theorem 2], [3, Theorem 1] and [4, Theorem 2].
2. Statement of results. Let $U(\bar{x})=\{x ;\|x-\bar{x}\|<\delta\} \subset D$ be a neighbourhood. Let $\|x\|$ and $\|A\|$ be denoted by

$$
\|x\|=\max _{1 \leq i \leq n}\left|x_{i}\right| \quad \text { and } \quad\|A\|=\max _{1 \leqq i \leq n} \sum_{j=1}^{n}\left|a_{i j}\right|,
$$

where $A=\left(a_{i j}\right)$ is an $n \times n$ matrix.
Given $x^{(0)} \in R^{n}$, define $x^{(i)} \in R^{n}(i=1,2, \cdots)$ by

$$
\begin{equation*}
x^{(i+1)}=f\left(x^{(i)}\right) \quad(i=0,1,2, \cdots) \tag{2.1}
\end{equation*}
$$

Put
(2.2)

$$
d^{(i)}=x^{(i)}-\bar{x} \quad \text { for } i=0,1,2, \cdots,
$$

and then define an $n \times n$ matrix D_{k} by

$$
D_{k}=\left(d^{(k)}, d^{(k+1)}, \cdots, d^{(k+n-1)}\right)
$$

Throughout this paper, we shall assume the same conditions (A.1)(A.5) as in [2].
(A.1) $f_{i}(x)(1 \leqq i \leqq n)$ are two times continuously differentiable on D.
(A.2) There exists a point $\bar{x} \in D$ satisfying (1.1).
(A.3) $\|J(\bar{x})\|<1$, where $J(x)=\left(\partial f_{i}(x) / \partial x_{j}\right)(1 \leqq i, j \leqq n)$.
(A.4) The vectors $d^{(k)}, d^{(k+1)}, \cdots, d^{(k+n-1)}, k=0,1,2, \cdots$, are linearly independent.
(A.5) $\quad \inf \left\{\left|\operatorname{det} D_{k}\right| /\left\|d^{(k)}\right\|^{n}\right\}>0$.

Then, we shall consider the Aitken-Steffensen formula

$$
\begin{equation*}
y^{(k)}=x^{(k)}-\Delta X^{(k)}\left(\Delta^{2} X^{(k)}\right)^{-1} \Delta x^{(k)} \quad(k=0,1,2, \cdots) \tag{2.3}
\end{equation*}
$$

where an n-dimensional vector $\Delta x^{(k)}$, and $n \times n$ matrices $\Delta X^{(k)}$ and $\Delta^{2} X^{(k)}$ are given by

$$
\begin{align*}
& \Delta x^{(k)}=x^{(k+1)}-x^{(k)}, \tag{2.4}\\
& \Delta X^{(k)}=\left(x^{(k+1)}-x^{(k)}, \cdots, x^{(k+n)}-x^{(k+n-1)}\right)
\end{align*}
$$

and

$$
\begin{equation*}
\Delta^{2} X^{(k)}=\Delta X^{(k+1)}-\Delta X^{(k)} . \tag{2.6}
\end{equation*}
$$

In this paper, we shall show the following
Theorem 1. Under conditions (A.1)-(A.5), for $x^{(k)} \in U(\bar{x})$, a new relation of the form

$$
\left\|y^{(k+1)}-\bar{x}\right\| \leqq M\left\|y^{(k)}-\bar{x}\right\|+\varepsilon_{k}, \quad \varepsilon_{k} \rightarrow 0(k \rightarrow \infty)
$$

holds with a constant M satisfying $\|J(\bar{x})\|<M<1$, where ε_{k} can be considered as "convergent term".

Remark 1. It follows from [2, Theorem 1] that $x^{(k)} \rightarrow \bar{x}$ as $k \rightarrow \infty$, and so, by [2, Theorem 2], $y^{(k)} \rightarrow \bar{x}$ as $k \rightarrow \infty$.
3. Preliminaries. As mentioned in [2], we have, by (2.1), (2.2) and (A.2),

$$
\begin{equation*}
d^{(k+1)}=J(\bar{x}) d^{(k)}+\xi\left(x^{(k)}\right), \tag{3.1}
\end{equation*}
$$

$\xi\left(x^{(k)}\right)$ being an n-dimensional vector, and by (A.1),

$$
\begin{equation*}
\left\|\xi\left(x^{(k)}\right)\right\| \leqq L_{1}\left\|d^{(k)}\right\|^{2} \quad \text { for } x^{(k)} \in U(\bar{x}) \tag{3.2}
\end{equation*}
$$

a constant L_{1} being suitably chosen.
Define an $n \times n$ matrix $Y\left(x^{(k)}, \cdots, x^{(k+n)}\right)$ by

$$
Y\left(x^{(k)}, \cdots, x^{(k+n)}\right)=\left(\xi\left(x^{(k+1)}\right)-\xi\left(x^{(k)}\right), \cdots, \xi\left(x^{(k+n)}\right)-\xi\left(x^{(k+n-1)}\right)\right) .
$$

Then, we have shown in [2] that there exist constants L_{2} and L_{3} such that the inequalities

$$
\begin{align*}
& \left\|Y\left(x^{(k)}, \cdots, x^{(k+n)}\right)\right\| \leqq L_{2}\left\|d^{(k)}\right\|^{2} \tag{3.3}\\
& \left\|\Delta X^{(k)}\right\| \leqq L_{3}\left\|d^{(k)}\right\|
\end{align*}
$$

hold for $x^{(k)} \in U(\bar{x})$.
For the proof of Theorem 1, we need the following two lemmas. Lemma 1 follows from [2, Theorem 1].

Lemma 1. Under conditions (A.1)-(A.3), we have

$$
\begin{equation*}
\left\|x^{(k+1)}-\bar{x}\right\| \leqq M_{1}\left\|x^{(k)}-\bar{x}\right\| \tag{3.5}
\end{equation*}
$$

for $x^{(k)} \in U(\bar{x})$ and a constant M_{1} with $\|J(\bar{x})\|<M_{1}<1$, and hence have

$$
\begin{equation*}
x^{(k+1)} \in U(\bar{x}) \tag{3.6}
\end{equation*}
$$

Lemma 2 ([2, Lemma 4]). Under conditions (A.1)-(A.5), for $x^{(k)} \in U(\bar{x})$, an $n \times n$ matrix $\Delta^{2} X^{(k)}$ is invertible, and there exists a constant L_{4} such that the inequality

$$
\begin{equation*}
\left\|\left(\Delta^{2} X^{(k)}\right)^{-1}\right\| \leqq L_{4}\left\|d^{(k)}\right\|^{-1} \tag{3.7}
\end{equation*}
$$

holds for sufficiently large k.
As easily seen, we obtain

$$
\begin{equation*}
\Delta x^{(k+1)}=(J(\bar{x})-I)\left[\Delta x^{(k)}+d^{(k)}+(J(\bar{x})-I)^{-1} \xi\left(x^{(k+1)}\right)\right], \tag{3.8}
\end{equation*}
$$

from (2.4), by (2.2), (3.1) and (A.3). By (2.5), we have $D_{k+1}=\Delta X^{(k)}+D_{k}$, and, by (3.1),

$$
d^{(k+i)}-d^{(k+i-1)}=(J(\bar{x})-I) d^{(k+i-1)}+\xi\left(x^{(k+i-1)}\right),
$$

so that
(3.9)

$$
\Delta X^{(k+1)}=J(\bar{x}) \Delta X^{(k)}+Y\left(x^{(k)}, \cdots, x^{(k+n)}\right)
$$

follows from (2.5). We observe that, from Lemma 2, by (3.6), $\Delta^{2} X^{(k+1)}$ is invertible for $x^{(k)} \in U(\bar{x})$. Hence, by writing
$\left(\Delta^{2} X^{(k+1)}\right)^{-1}=\left\{\left(\Delta^{2} X^{(k)}\right)^{-1}-\left[I-\left(\Delta^{2} X^{(k+1)}\right)^{-1}(J(\bar{x})-I) \Delta^{2} X^{(k)}\right]\left(\Delta^{2} X^{(k)}\right)^{-1}\right\}(J(\bar{x})-I)^{-1}$, and using (2.6) and (3.9), we see that
(3.10) $\quad\left(U^{2} X^{(k+1)}\right)^{-1}=\left\{\left(\Delta^{2} X^{(k)}\right)^{-1}-\left(\Delta^{2} X^{(k+1)}\right)^{-1}\left[(J(\bar{x})-I) \Delta X^{(k)}\right.\right.$

$$
\left.\left.+Y\left(x^{(k+1)}, \cdots, x^{(k+n+1)}\right)\right]\left(\Delta^{2} X^{(k)}\right)^{-1}\right\}(J(\bar{x})-I)^{-1} .
$$

4. Proof of Theorem 1. We shall prove Theorem 1. As may be seen by Remark 1 in §2, we have $y^{(k)} \rightarrow \bar{x}$ as $k \rightarrow \infty$. Now, (2.3) gives

$$
\begin{equation*}
y^{(k+1)}-\bar{x}=d^{(k+1)}-\Delta X^{(k+1)}\left(\Delta^{2} X^{(k+1)}\right)^{-1} \Delta x^{(k+1)} . \tag{4.1}
\end{equation*}
$$

Substituting (3.1), (3.8), (3.9) and (3.10) into (4.1), it yields

$$
\begin{align*}
y^{(k+1)}-\bar{x}= & J(\bar{x})\left(y^{(k)}-\bar{x}\right)+\xi\left(x^{(k)}\right) \tag{4.2}\\
& +p_{1}\left(x^{(k)}, \cdots, x^{(k+n+1)}\right)+p_{2}\left(x^{(k)}, \cdots, x^{(k+n+2)}\right) \\
& +p_{3}\left(x^{(k)}, \cdots, x^{(k+n+1)}\right)+p_{4}\left(x^{(k)}, \cdots, x^{(k+n+2)}\right),
\end{align*}
$$

where

$$
\begin{align*}
& p_{1}\left(x^{(k)}, \cdots, x^{(k+n+1)}\right) \tag{4.3}\\
& \quad=-J(\bar{x}) \Delta X^{(k)}\left(U^{2} X^{(k)}\right)^{-1}\left[d^{(k)}+(J(\bar{x})-I)^{-1} \xi\left(x^{(k+1)}\right)\right]
\end{align*}
$$

$$
\begin{equation*}
p_{2}\left(x^{(k)}, \cdots, x^{(k+n+2)}\right) \tag{4.4}
\end{equation*}
$$

$$
=J(\bar{x}) \Delta X^{(k)}\left(\Delta^{2} X^{(k+1)}\right)^{-1}\left[(J(\bar{x})-I) \Delta X^{(k)}\right.
$$

$$
\left.+Y\left(x^{(k+1)}, \cdots, x^{(k+n+1)}\right)\right]\left(\Delta^{2} X^{(k)}\right)^{-1}(J(\bar{x})-I)^{-1} \Delta x^{(k+1)}
$$

$$
\begin{align*}
& p_{3}\left(x^{(k)}, \cdots, x^{(k+n+1)}\right) \tag{4.5}\\
& =--Y\left(x^{(k)}, \cdots, x^{(k+n)}\right)\left(\Delta^{2} X^{(k)}\right)^{-1}(J(\bar{x})-I)^{-1} \Delta x^{(k+1)}, \\
& p_{4}\left(x^{(k)}, \cdots, x^{(k+n+2)}\right) \tag{4.6}\\
& =Y\left(x^{(k)}, \cdots, x^{(k+n)}\right)\left(\Delta^{2} X^{(k+1)}\right)^{-1}\left[(J(\bar{x})-I) \Delta X^{(k)}\right. \\
& \left.\quad+Y\left(x^{(k+1)}, \cdots, x^{(k+n+1)}\right)\right]\left(U^{2} X^{(k)}\right)^{-1}(J(\bar{x})-I)^{-1} \Delta x^{(k+1)} .
\end{align*}
$$

Recall that $x^{(k+1)} \in U(\bar{x})$, provided $x^{(k)} \in U(\bar{x})$. Then, (3.2), (3.3) and (3.7) lead to

$$
\begin{equation*}
\left\|\xi\left(x^{(k+1)}\right)\right\| \leqq L_{1}\left\|d^{(k+1)}\right\|^{2} \leqq L_{1}\left\|d^{(k)}\right\|^{2}, \tag{4.7}
\end{equation*}
$$

$$
\begin{equation*}
\left\|Y\left(x^{(k+1)}, \cdots, x^{(k+n+1)}\right)\right\| \leqq L_{2}\left\|d^{(k+1)}\right\|^{2} \leqq L_{2}\left\|d^{(k)}\right\|^{2} \tag{4.8}
\end{equation*}
$$

and
(4.9)

$$
\left\|\left(\Delta^{2} X^{(k+1)}\right)^{-1}\right\| \leqq L_{4}\left\|d^{(k+1)}\right\|^{-1}
$$

respectively. Since $d^{(k+1)}=\Delta x^{(k)}+d^{(k)}$, it follows from (3.8) that

$$
\begin{equation*}
\left\|\Delta x^{(k+1)}\right\| \leqq L_{5}\left\|d^{(k+1)}\right\| \leqq L_{5}\left\|d^{(k)}\right\| \tag{4.10}
\end{equation*}
$$

for a constant L_{5} chosen suitably. In (4.7), (4.8) and (4.10), we have used the fact (3.5) in Lemma 1.

Now, as for equalities (4.3)-(4.6), there exist constants L_{8}, L_{7}, L_{8} and L_{9} such that the following estimates (4.11)-(4.14) hold :
(4.11) $\quad\left\|p_{1}\left(x^{(k)}, \cdots, x^{(k+n+1)}\right)\right\| \leqq L_{6}\left\|d^{(k)}\right\|$
from (4.3), by (3.4), (3.7) and (4.7);
(4.12)

$$
\left\|p_{2}\left(x^{(k)}, \cdots, x^{(k+n+2)}\right)\right\| \leqq L_{7}\left\|d^{(k)}\right\|
$$

from (4.4), by (3.4), (3.7), (4.8), (4.9) and (4.10);
(4.13) $\quad\left\|p_{3}\left(x^{(k)}, \cdots, x^{(k+n+1)}\right)\right\| \leqq L_{8}\left\|d^{(k)}\right\|^{2}$
from (4.5), by (3.3), (3.7) and (4.10);

$$
\begin{equation*}
\left\|p_{4}\left(x^{(k)}, \cdots, x^{(k+n+2)}\right)\right\| \leqq L_{9}\left\|d^{(k)}\right\|^{2} \tag{4.14}
\end{equation*}
$$

from (4.6), by (3.3), (3.4), (3.7), (4.8), (4.9) and (4.10).
Consequently, (4.2), together with (3.2) and (4.11)-(4.14), shows that $\left\|y^{(k+1)}-\bar{x}\right\| \leqq M\left\|y^{(k)}-\bar{x}\right\|+\varepsilon_{k}$
holds with a constant M satisfying $\|J(\bar{x})\|<M<1$, where

$$
\varepsilon_{k}=\left(L_{8}+L_{7}+\left(L_{1}+L_{8}+L_{9}\right)\left\|d^{(k)}\right\|\right)\left\|d^{(k)}\right\| \rightarrow 0 \quad \text { as } k \rightarrow \infty .
$$

Thus we have proved Theorem 1, as desired.
The author would like to express his hearty thanks to Prof. H. Mine of Kyoto University for many valuable suggestions.

References

[1] P. Henrici: Elements of Numerical Analysis. John Wiley, New York (1964).
[2] T. Noda: The Aitken-Steffensen formula for systems of nonlinear equations. Sûgaku, 33, 369-372 (1981) (in Japanese).
[3] -: The Steffensen iteration method for systems of nonlinear equations. Proc. Japan Acad., 60A, 18-21 (1984).
[4] -_: The Aitken-Steffensen formula for systems of nonlinear equations. II. Sûgaku, 38 (1986) (to appear) (in Japanese).

