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1. Introduction. In this paper we consider the existence and the
asymptotic behavior of the global solution of the following variational
inequality of evolution (1.1) associated with the boundary condition (1.2)
and the initial condition (1.3)"
(1.1) (u-zlu-eU-f, v-u.)>=O for a.e. t e (0, co),
or any v e L(t9) satisfying O<=v_M a.e. in 9, and O<=uM on [0, oo] XD,
(1.2) a.uq-(1--oO(u/n)=O on (0, oo)
(1.3) u(0, ")=u0 in
where/2 is a bounded domain in R with smooth boundary 32, f is HSlder-
continuous on (0, oo)X9 and f_>_0, e C(3tO) satisfies 0__<<1 or --1 on
/2, u0 e C(t0), and u01o-0 in the case c--l, M is a given positive number.

Note that the existence of a global solution is highly restricted in the
case of the equation of evolution"
(1.4) U=AU-b e-bf
associated with (1.2) and (1.3) (see Fujita [1]).

We shall also show the existence of a solution u of the following
stationary variational inequality"
(1.5) (--zlu--eU--g, v--uoo)()O
for any v e L(/2) satisfying O<:vgM a.e. in/2, and OguooM, where g is
ttSlder-continuous in/2 and g=>O, and the boundary condition
(1.6) cru+ (1 )(au/ a.) 0.

As in (1.4), we cannot always expect the existence ot a sclution U of
the equation (1.7) under the boundary condition (1.8)
(1.7) AU
(1.8) crU+(1-)(aU/a,)=O on

If f is equal to g which is independent o the time t, then we can
show that the solution u(t, .) of (1.1)-(1.2)-(1.3) converges to the solution
u o1 (1.5)-(1.6) as t tends to oo.

2. Statement of Theorems.
Theorem 1. Under the conditions stated in 1, there exists one and

only one solution u--u(t, .) o.f (1.1)-(1.2)-(1.3) which satisfies the following
conditions (2.1), (2.2), (2.3) and (2.4)
(2.1) u e C([0, T] X ),
(2.2) Dxu e C([, T] X ),
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(2.3) u is differentiable at a.e. t e (/, T) as an L(t2)-valued function on
(, T), and ut e L(6, T; L(12)),

(2.4) /u e L(, T; L(9)),
where and T are arbitrary positive numbers such that 3 T, Du denotes
any first order partial derivative in space variables.

Theorem 2o Let u. be the solution of (1.1)-(1.2)-(1.3) corresponding
to f and Uo for i 1, 2. If f >=f and Uo u0., then u u. on [0, oo) .

Theorem :}o Under the conditions stated in 1, there exists a solution
u of (1.5)-(1.6) which satisfies
(2.5) u e C() 1H(/2).
If ----1 and diameter of D is suciently small (for example diam2
(2ne-)/), then the solution is unique.

Theorem 4. Let u----u(t, .) be the solution of (1.1)-(1.2)-(1.3) satisfying
(2.1), (2.2), (2.3) and (2.4) where we assume f(t, .)----g(.). Then the fol-
lowing (i) and (ii) hold"

(i) If :__0, then there exist t.O and a nonnegative, continuous and
monotone decreasing function c(t) satisfying c(t)--0 for any t} t. such that
u(t, .) satisfies
(2.6) Ilu(t, .)--MIl()<=c(t) for any t>O.

(ii) If ----1 and diam/2 is sufficiently small (as stated in Theorem 3),
then there exist positive numbers and C such that
(2.7) [lu(t, .)-ull,.()<Ce- for any t>O,
where u is the solution of the stationary variational inequality (1.5)-(1.6)
under the Dirichlet boundary condition.

:. Outline of the proofs of theorems.
Proof of Theorem 1. We use so-called penalty method. We shall

prove this theorem in the case; c_1, f----0 and uoM. The proof of general
case may be performed analogously. For any positive number e-/2,
we define the mapping fl" R-+R as follows"

()--l(e---l)/--Max (-(e---l), 0).
We also fix a C-mapping " R-R satisfying the following condition"

’(.) is the identity mapping on [0, ), and is bounded and negative on
(-o, 0).

Let U(t, x, y) be the undamental solution of the parabolic equation ut--,du
in 2 under the Diriehlet boundary condition. We construct "approximate
unetions" u by solving a Volterra type integral equation by iteration as
ollows

u0(t, x) u0(x),

x)= o u(t,
(3.1)

/ +o; U(t-r, x, y)’(e--fl(u.))dydr

(n O, 1, 2, ...).
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Because of the boundedness of ’(e--fl())on R, IlU,nllLo((O,T)9)is bounded uni-
formly in n. By standard argument, we can show that u. converges to a
unction u uniformly on [0, T] /2 which satisfies

lug(t, y(t, x,

+:I, U(t--r, x, y)(e-fl(u))dydr

on (0, T] X 9.
Accordingly, u satisfies

(3.3) (u.)t Au. + F(eu*- fl(u))

We may also show 0u2 on [0, T]Xg, where 2 is a unique root of
e=fl(2). So we may replace y(eU’-fl(u)) in (3.4) by eU-fl(u), and we
may conclude that u satisfies

(3.4) (u.)t Au, + e-fl(u.)
u ][0,T] =0.

Next we choose a positive number V so small that ]lu(t, .)((o,))M.
Then on [0, V]Xg, u is the solution of U=AU+ev, and u and Du are
uniformly bounded and equicontinuous on [V, T] X 9 this fact follows from
(3.2) and the property of the fundamental solution U(t, x, y). Applying
the Ascoli-Arzel Theorem, there exist a sequence {Sn} $ 0 and a function
u such that u (resp. Du) converges to u (resp. Du) uniformly on [, T]
Xg. Thus we have proved (2.1) and (2.2). Moreover there exists a non-
negative function B e L((0, T) X 9) such that fl(u) converges to B weakly;
this fact follows from he uniform boundedness of I[(u)l]((.r),). We
can also show that {(u)t}o<<-/ is bounded in L(, T;L()). So (2.3)
holds, and accordingly (2.4) and the following equation holds"
(3.5) ut Au+ e-B in L(V, T L(9)).
To show (1.1), we take any t, t2 (ttT) and v e L(, T; L(9)) satisfy-
ing 0vM. Then

t2 t2(3.6) (ut--u--e, v--u)()dr= (--B, v--u)(,)dr
t t

t t(-- B, v M)(,)dr (-- B, M--u)(,)dr I+ II.
t t

That I0 is clear. That II=0 ollows rom the estimate of 2 and
[fl(u)]]((0.r),). Thus we have proved the existence of a solution.

If there exists another solution which satisfies (1.1)-(1.2)-(1.3) and
(2.1), (2.2), (2.3) and (2.4), then the difference w=u- satisfies

d w(t)I 2e w(t)
dt

and accordingly ]]w(t) et.()]w()]],) =0.

Proof of Theorem 2. Let u be the approximate unction of u stated
in the proof ofTheorem 1 (i=1, 2). Then we can show u. Taking
limit along the common subsequence (} $ 0, we obtain u.
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Proof of Theorem 3. To construct approximate functions, we define
the operator F C(9)-*C(9) as follows;

(3.8) (Fu)(x)--[ G(x, y)r(eU-- fl(u))dy,
J

where G is the Green function under the given boundary condition. Then
F is a compact operator in C(/2). Hence, using Schauder’s fixed point
Theorem, we can define approximate functions. Using the argument
used in the proof of Theorem 1, we can prove the existence of a solution.

If there exists another solution , the difference w--u-- satisfies

11lTw e >0 If diam ,(2 is so small as stated in Theorem 3
liWltL<) =o ollows from he Poincar inequality.

Proof of Theorem 4. We may also show that the difference w(t)=u(t)
--u satisfies (1/2)(d/dt)l]w(t)l](a)+[lw[l(ae[[w[[(a. If diam/2 is so
small as stated in Theorem 3, Theorem 4-(i) follows from the Poincar
inequality. (ii) is proved by using Theorem 2.

Remark. It is not very difficult to extend our results to the case of
more general C-nonlinear terms. Of course the u-type nonlinear term
can be treated easily. Details will be published elsewhere.
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