4. Fock Space Representations of Virasoro Algebra and Intertwining Operators

By Yukihiro Kanie*) and Akihiro Tsuchiya**)
(Communicated by Kôsaku Yosida, M. J. A., Jan. 13, 1986)

§ 0. In this note, we construct the Fock space representations of the Virasoro algebra \mathcal{L} and intertwining operators between them in the explicit form, and give the analogous determinant formula for them as for the Verma modules (see V. G. Kac [4]). Proofs and details will be given in the forthcoming paper [6].
§ 1. The Virasoro algebra \mathcal{L} is the Lie algebra over the complex number field C of the following form :

$$
\mathcal{L}=\sum_{n \in \mathbb{Z}} C e_{n} \oplus C e_{0}^{\prime},
$$

with the relations : for any $m, n \in \boldsymbol{Z}$

$$
\left\{\begin{array}{l}
{\left[e_{n}, e_{m}\right]=(m-n) e_{m+n}+\left(\left(m^{3}-m\right) / 12\right) \delta_{m+n, 0} e_{0}^{\prime},} \\
{\left[e_{0}^{\prime}, e_{m}\right]=0 .}
\end{array}\right.
$$

This is a unique central extension of the Lie algebra \mathcal{L}^{\prime} of trigonometric polynomial vector fields on the circle:

$$
\mathcal{L}^{\prime}=\sum_{n \in \boldsymbol{Z}} C l_{n} ;\left[l_{n}, l_{m}\right]=(m-n) l_{m+n}(m, n \in \boldsymbol{Z}) \quad\left(l_{n}=z^{n+1}(d / d z)\right)
$$

Let $\mathfrak{G}=\boldsymbol{C} e_{0} \oplus \boldsymbol{C} e_{0}^{\prime}$ be the abelian subalgebra of \mathcal{L} of maximal dimension. For each (h, c) $\in C^{2} \cong \mathfrak{h}^{*}$ the dual of \mathfrak{h}, we can define the Verma module $M(h, c)$ and its dual $M^{\dagger}(h, c)$ as follows. $M(h, c)$ and $M^{\dagger}(h, c)$ are the left and right \mathcal{L}-modules with cyclic vectors $|h, c\rangle$ and $\langle c, h|$ with following fundamental relations respectively :

$$
\begin{array}{lll}
e_{-n}|h, c\rangle=0 & (n \geq 1) ; & e_{0}|h, c\rangle=h|h, c\rangle,
\end{array} e_{0}^{\prime}|h, c\rangle=c|h, c\rangle ; ~ ; ~ c, h \mid e_{n}=0 \quad(n \geq 1) ; \quad\langle c, h| e_{0}=\langle c, h| h, \quad\langle c, h| e_{0}^{\prime}=\langle c, h| c .
$$

V. G. Kac [4] studied these \mathcal{L}-modules and obtained the formula concerning the determinants of the matrices of their vacuum expectation values. By this Kac's determinant formula, F. L. Feigin and D. B. Fuks [3] determined the composition series of $M(h, c)$.
§ 2. Consider the associative algebra \mathcal{A} over C generated by $\left\{p_{n}(n \in Z)\right.$, 1\} with the following Bose commutation relations:

$$
\left[p_{m}, p_{n}\right]=n \delta_{m+n, 0} i d ; \quad\left[\Lambda, p_{m}\right]=0 \quad(m, n \in Z)
$$

And consider the following operators in a completion $\hat{\mathcal{A}}$ of \hat{A} :

$$
\begin{array}{ll}
L_{n}=\left(p_{0}-n \Lambda\right) p_{n}+\frac{1}{2} \sum_{j=1}^{n-1} p_{j} p_{n-j}+\sum_{j \geq 1} p_{n+j} p_{-j} & (n \geq 1) ; \\
L_{-n}=\left(p_{0}+n \Lambda\right) p_{-n}+\frac{1}{2} \sum_{j=1}^{n-1} p_{-j} p_{j-n}+\sum_{j \geq 1} p_{j} p_{-n-j} & (n \geq 1) ;
\end{array}
$$

[^0]\[

$$
\begin{aligned}
& L_{0}=\frac{1}{2}\left(p_{0}^{2}-\Lambda^{2}\right)+\sum_{j \geq 1} p_{j} p_{-j} \\
& L_{0}^{\prime}=\left(-12 \Lambda^{2}+1\right) i d .
\end{aligned}
$$
\]

Then by long but elementary calculations, we get
Theorem 1. The operators $L_{n}(n \in Z)$ and L_{0}^{\prime} satisfy the commutation relations of the Virasoro algebra, i.e. for $m, n \in \boldsymbol{Z}$

$$
\left\{\begin{array}{l}
{\left[L_{n}, L_{m}\right]=(m-n) L_{m+n}+\left(\left(m^{3}-m\right) / 12\right) \delta_{m+n, 0} L_{0}^{\prime},} \\
{\left[L_{0}^{\prime}, L_{m}\right]=0 .}
\end{array}\right.
$$

§3. For each $(w, \lambda) \in C^{2}$, we consider the left and right \mathcal{A}-module $\mathscr{F}(w, \lambda)$ and $\mathscr{P}^{\dagger}(w, \lambda)$ with cyclic vectors $|w, \lambda\rangle$ and $\langle\lambda, w|$ with following fundamental relations respectively :

$$
\begin{array}{lll}
p_{-n}|w, \lambda\rangle=0 & (n \geq 1) ; & p_{0}|w, \lambda\rangle=w|w, \lambda\rangle,
\end{array} \quad \Lambda|w, \lambda\rangle=\lambda|w, \lambda\rangle ; ~=~(n \geq 1) ; \quad\langle\lambda, w| p_{0}=\langle\lambda, w| w, \quad\langle\lambda, w| \Lambda=\langle\lambda, w| \lambda .
$$

Then by using the canonical homomorphism π (i.e. $\pi\left(e_{n}\right)=L_{n}(n \in Z)$; $\left.\pi\left(e_{0}^{\prime}\right)=L_{0}^{\prime}\right)$, we get the left \mathcal{L}-module ($\left.\mathscr{P}(w, \lambda), \pi_{(w, \lambda)}, \mathcal{L}\right)$ which is called the Fock space representation, and by the explicit formulae of L_{n} and L_{0}^{\prime}, we get

$$
\left\{\begin{array}{l}
L_{0}|w, \lambda\rangle=(1 / 2)\left(w^{2}-\lambda^{2}\right)|w, \lambda\rangle ; L_{0}^{\prime}|w, \lambda\rangle=\left(1-12 \lambda^{2}\right)|w, \lambda\rangle ; \\
L_{-n}|w, \lambda\rangle=0 \quad(n \geq 1) .
\end{array}\right.
$$

By the universal property of the Verma module $M(h, c)$ as an \mathcal{L}-module, for each $(w, \lambda) \in C^{2}$ we get the unique \mathcal{L}-module mapping

$$
\pi_{w, \lambda}: M(h(w, \lambda), c(\lambda)) \longrightarrow \mathscr{P}(w, \lambda)
$$

which sends the vacuum vector $|h(w, \lambda), c(\lambda)\rangle \in M(h(w, \lambda), c(\lambda))$ to the vacuum vector $|w, \lambda\rangle \in \mathscr{P}(w, \lambda)$, where

$$
h(w, \lambda)=(1 / 2)\left(w^{2}-\lambda^{2}\right) \quad \text { and } \quad c(\lambda)=1-12 \lambda^{2} .
$$

Moreover this mapping $\pi_{w, 2}$ is degree-preserving, if we set
$\operatorname{deg} e_{n}=\operatorname{deg} p_{n}=n(n \in \boldsymbol{Z}) ; \quad \operatorname{deg} e_{0}^{\prime}=\operatorname{deg} \Lambda=0 ; \quad \operatorname{deg}|w, \lambda\rangle=\operatorname{deg}|h, c\rangle=0$.
Denote by $C_{d}(w, \lambda)$ the determinant of the mapping $\pi_{w, 2}$ restricted to the degree $d(\geq 0)$ subspace $M_{d}(h, c)$ of dimension $p(d)$, where $p(d)$ is the number of partitions of the integer d.

Then by constructing intertwining operators (Theorem 4) and by showing their nontriviality (Theorem 5), we get the following.

Theorem 2. For each $(w, \lambda) \in C^{2}$, let $s_{ \pm}$be the roots of the equation $\lambda=(1 / s)-(s / 2)$, then

$$
C_{d}(w, \lambda)=\text { const. } \prod_{k=1}^{d} \prod_{a / k}\left(w+\frac{a}{2} s_{+}+\frac{k}{2 a} s_{-}\right)^{p(d-k)}
$$

As a corollary,
Theorem 3. (1) The canonical \mathcal{L}-module mapping

$$
\pi_{w, \lambda}: M(h(w, \lambda), c(\lambda)) \longrightarrow \mathscr{A}(w, \lambda)
$$

is isomorphic, if and only if the equation
(*)

$$
w+(a / 2) s_{+}+(b / 2) s_{-}=0
$$

has no integral solutions $(a, b) \in Z^{2}$ with $a \geq 1$ and $b \geq 1$.
(2) The \mathcal{L}-module mapping $\pi_{w, \lambda}^{\dagger}: M^{\dagger}(h(w, \lambda), c(\lambda)) \rightarrow \mathscr{P}^{+}(w, \lambda)$ is isomorphic, if and only if the equation (*) has no integral solutions $(a, b) \in \boldsymbol{Z}^{2}$
with $a \leq-1$ and $b \leq-1$.
(3) $\mathcal{F}(w, \lambda)$ is irreducible as an \mathcal{L}-module, if and only if the equation (*) has no integral solutions $(a, b) \in Z^{2}$ with $a b \geq 1$.

And this condition (3) is equivalent to the fact that the corresponding Verma module $M(h(w, \lambda), c(\lambda))$ is irreducible.
§4. To construct intertwining operators between Fock spaces, we introduce the operators of the following type acting on $\mathscr{F}(w, \lambda)$. Fix $s \in \boldsymbol{C}^{*}$, and consider

$$
X(s ; \zeta)=\exp \left(s \sum_{n=1}^{\infty} \zeta_{n} \frac{p_{n}}{n}\right) \exp \left(-s \sum_{n=1}^{\infty} \zeta^{-n} \frac{p_{-n}}{n}\right) \zeta^{s p_{0}-(s / 2)} T_{s}
$$

and for any $a \geq 1$

$$
\begin{aligned}
Z\left(s ; \zeta_{1}, \cdots, \zeta_{a}\right)= & F\left(\frac{s^{2}}{2} ; \zeta_{1}, \cdots, \zeta_{a}\right) \exp \left(s \sum_{n=1}^{\infty}\left(\zeta_{1}^{n}+\cdots+\zeta_{a}^{n}\right) \frac{p_{n}}{n}\right) \\
& \times \exp \left(-s \sum_{n=1}^{\infty}\left(\zeta_{1}^{-n}+\cdots+\zeta_{a}^{-n}\right) \frac{p_{-n}}{n}\right) T_{a s}, \\
& T_{s}: \mathscr{F}(w, \lambda) \longrightarrow \mathscr{F}(w+s, \lambda)
\end{aligned}
$$

is the operator defined by

$$
T_{s}|w, \lambda\rangle=|w+s, \lambda\rangle ; \quad\left[T_{s}, p_{n}\right]=0(n \neq 0) ; \quad\left[T_{s}, \Lambda\right]=0
$$

and

$$
F\left(\alpha ; \zeta_{1}, \cdots, \zeta_{a}\right)=\prod_{j=1}^{a} \zeta_{j}^{-(a-1) \alpha} \prod_{1 \leq i<j \leq a}\left(\zeta_{i}-\zeta_{j}\right)^{2 \alpha} .
$$

Operators of this type are called Vertex operators.
Then $X(s ; \zeta)$ and $Z\left(s ; \zeta_{1}, \cdots, \zeta_{a}\right)$ are multivalued holomorphic functions of $\zeta \in C^{*}$ and $\left(\zeta_{1}, \cdots, \zeta_{a}\right) \in M_{a}$ respectively with valued in the operators acting on $\mathscr{F}(w, \lambda)$'s, where M_{a} is the manifold defined by

$$
M_{a}=\left\{\left(\zeta_{1}, \cdots, \zeta_{a}\right) \in\left(C^{*}\right)^{a} ; \zeta_{i} \neq \zeta_{j}(1 \leq i<j \leq a)\right\}
$$

And these operators satisfy the interesting formulae:

$$
\begin{aligned}
& {\left[L_{m}, X(s ; \zeta)\right]=\zeta^{-m}\left(\zeta \frac{d}{d \zeta}-m\left(s \Lambda+\frac{s^{2}}{2}\right)\right) X(s ; \zeta) \quad\left(m \in Z, s, \zeta \in C^{*}\right)} \\
& {\left[L_{m}, Z\left(s ; \zeta_{1}, \cdots, \zeta_{a}\right)\right]} \\
& =\sum_{j=1}^{a} \zeta_{j}^{-m}\left[\zeta_{j} \frac{\partial}{\partial \zeta_{j}}+\left\{s p_{0}-\frac{a}{2} s^{2}-m\left(s \Lambda+\frac{s^{2}}{2}\right)\right\}\right] Z\left(s ; \zeta_{1}, \cdots, \zeta_{a}\right) \\
& \quad\left(m \in \boldsymbol{Z}, s \in \boldsymbol{C},\left(\zeta_{1}, \cdots, \zeta_{a}\right) \in M_{a}\right) .
\end{aligned}
$$

For each $\alpha \in C^{*}$, denote by \mathcal{S}_{α}^{*} the local coefficient system with values in C which is determined by the monodromy of the multivalued holomorphic function $F\left(\alpha ; \zeta_{1}, \cdots, \zeta_{a}\right)$ on M_{a}, and denote by \mathcal{S}_{α} the dual local system of \mathcal{S}_{α}^{*}.

Fix $s \in C^{*}$ and an integer $a \geq 1$, and take an element $\Gamma \in H_{a}\left(M_{a} ; \mathcal{S}_{\alpha}\right)$. For each integer $b \in Z$, we can consider the operator

$$
\mathcal{O}(s, \Gamma ; a, b)=\int_{\Gamma} Z\left(s ; \zeta_{1}, \cdots, \zeta_{a}\right) \zeta_{1}^{-b-1} \cdots \zeta_{a}^{-b-1} d \zeta_{1} \cdots d \zeta_{a}
$$

Then we get the following.
Theorem 4. 1) For each $(w, \lambda) \in C^{2}$, the operator $\mathcal{O}(s, \Gamma ; a, b)$ acts as

$$
\mathcal{O}(s, \Gamma ; a, b): \mathscr{F}(w, \lambda) \longrightarrow \mathscr{F}(w+a s, \lambda) .
$$

2) Take $s \in C^{*}$ and $a, b \in Z$ with $a \geq 1$. Put $\lambda=\lambda(s)=(1 / s)-(s / 2)$, then the operator

$$
\mathcal{O}(s, \Gamma ; a, b): \mathscr{P}(-(a / 2) s-(b / s), \lambda) \longrightarrow \mathscr{P}((a / 2) s-(b / s), \lambda)
$$

commutes with the action of \mathcal{L}.
$\S 5$. The nontriviality of the obtained intertwining operators are guaranteed by the following theorem. Consider the set Ω_{a-1} defined by

$$
\Omega_{a-1}=\{\alpha \in C ; d(d+1) \alpha \notin Z, d(a-d) \alpha \notin \boldsymbol{Z}(1 \leq d \leq a-1)\} .
$$

Then we get
Theorem 5. There exists $\Gamma(\alpha) \in H_{a}\left(M_{a} ; \mathcal{S}_{\alpha}\right)$ which depends holomorphically on $\alpha \in \Omega_{a-1}$ such that the operator $\mathcal{O}(s ; a, b)=\mathcal{O}\left(a, \Gamma\left(s^{2} / 2\right) ; a, b\right): \mathscr{F}(w-a s,(1 / s)-(s / 2)) \longrightarrow \mathscr{F}(w,(1 / s)-(s / 2))$ is nontrivial in the sense that for any $w \in \boldsymbol{C}$.

1) For $b \geq 0$, the image $\mathcal{O}(s ; a, b)|w-a s,(1 / s)-(s / 2)\rangle$ is a nonzero vector.
2) For $b<0$, there is a vector $|v\rangle \in \mathscr{F}(w-a s,(1 / s)-(s / 2))$ such that $\mathcal{O}(s ; a, b)|v\rangle=|w,(1 / s)-(s / 2)\rangle$.

In order to prove this theorem, we explicitly construct a cycle $\Gamma(\alpha) \in$ $H_{a}\left(M_{a} ; \mathcal{S}_{\alpha}\right)$ parametrized by $\alpha \in \Omega_{a-1}$, by using the technique of resolutions of singularities.

The proof of the nontriviality of the operator $\mathcal{O}(s ; a, b)$ can be reduced to the celebrated Selberg integral formula :

Theorem 6 (A. Selberg [5]). Let $\alpha, \beta, \gamma \in C$ satisfy the inequalities
$\operatorname{Re} \beta>-1, \quad \operatorname{Re} \gamma>-1, \quad \operatorname{Re} \alpha>-\min \left\{\frac{1}{m}, \frac{\operatorname{Re} \beta+1}{m-1}, \frac{\operatorname{Re} \gamma+1}{m-1}\right\}$,
then the improper integral (**) converges absolutely and is explicitly expressed as
(**)

$$
\begin{aligned}
& \int_{\Delta(m)} \prod_{1 \leq i<j \leq m}\left(k_{i}-k_{j}\right)^{2 \alpha} \prod_{j=1}^{m} k_{j}^{\beta}\left(1-k_{j}\right)^{\gamma} d k_{1} \cdots d k_{m} \\
& \quad=\frac{1}{m!} \prod_{j=1}^{m} \frac{\Gamma(j \alpha+1) \Gamma((j-1) \alpha+\beta+1) \Gamma((j-1) \alpha+\gamma+1)}{\Gamma(\alpha+1) \Gamma((m+j-2) \alpha+\beta+\gamma+2)}
\end{aligned}
$$

where $m=a-1$ and $\Delta(m)$ is the open m-simplex defined by

$$
\Delta(m)=\left\{\left(k_{1}, \cdots, k_{m}\right) \in \boldsymbol{R}^{m} ; 1>k_{1}>\cdots>k_{m}>0\right\} .
$$

References

[1] Date E., Jimbo, M., Kashiwara, M., and Miwa, T.: Transformation groups for soliton equations. Proc. of RIMS symposium (ed. by M. Jimbo \& T. Miwa), World Scientific, Singapore, pp. 39-120 (1983).
[2] Feigin, F. L. and Fuks, D. B.: Skew-symmetric invariant differential operators on a straight line and Virasoro algebra. Func. Anal. \& its Appl., 16-2, 47-63 (1982) (in Russian).
[3] -: Verma modules over Virasoro algebra. ibid., 17-3, 91-92 (1983) (in Russian).
[4] Kac, V. G.: Contravariant form for infinite dimensional Lie algebras and superalgebras. Lect. Notes in Physics, 94, 441-445 (1979).
[5] Selberg, A.: Bemerkninger om et Multiplet Integral. Norsk Mat. Tidsskrift, 26, 71-78 (1944).
[6] Tsuchiya, A. and Kanie, Y.: Fock space representations of the Virasoro algebra. Intertwining operators (to appear in Publ. RIMS, Kyoto Univ.).

[^0]: *) Department of Mathematics, Mie University.
 **) Department of Mathematics, Nagoya University.

