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O Introduction. The purpose of this note is to state several results
in my Master Thesis [7]. The details will be published elsewhere. The
main theorem of this note is Theorem 3. By this theorem, if Kx has a good
Zariski decomposition, then the canonical ring of X is finitely generated.
Theorem 1 and Theorem 2 are key theorems to prove Theorem 3. Theorem
5 is a characterization of a nef and good divisor by tx. All varieties in
this note are assumed to be defined over an algebraically closed field of
characteristic zero.

1 Notation. Let X be an algebraic scheme. We denote the group
of Cartier divisors on X by Div (X). For a non-zero rational function
on X, the principal Cartier divisor defined by is denoted by div (). For
D, D2 e Div (X)(R)R, we say D1 is R-linear equivalent to D., which is denoted
by D-D, if there exists a positive integer m and exists a non-zero
rational function on X such that D,--D.+ (l/m)div(). For a real
number a, the lounding-up, the lounding-down, the nearest integer and
the fractional part of a are denoted by 7a, [a], (a)and {a} respectively,
where in case {a}-l/2, we define (a)-ra if aO, (a)-[a] if a0. From
now on, we assume X is non-singular. Let D be an element of Div (X) (R) R
and D =,taD, the irreducible decomposition of D. Then we set
iVaD, [D]--] [a]D, (D)= (a)D and {D}=, {a}D. Let 5 be

an ideal sheaf of x and x a point of X (not necessarily closed). Then we
define
ord (5)=max{a e NU {oo} 150,z_c_} and ord (D)----,aord(F_)x(--D)),
where is the maximal ideal o 0,x. We urthermore assume X is com-
plete. We set (X, D)=max {(X, [roD])}. I (X, D)=dim X, D is called
big. D is called good i there exists a birational morphism " Y--X o
non-singular complete varieties and exists a fiber space h" Y-Z o non-

h*singular complete varieties such that =*(D) (M) or some big element
M of Div(Z)(R)R. Next, we consider the relative case. Let X be a non-
singular algebraic variety, S an algebraic variety, f" X-S a proper sur-
jective morphism. For D e Div (X)(R)R, we set

E(X/ S, D) {n e N\{0} f.C)x([nD]) :/: 0}.
D is called f-nef i (D. C)0 or any complete curve C on X such that f(C)
is a point. D is called f-big (resp. f-good) i DIx is a big (resp. good)
element of Div (X)(R)R, where X is the generic fiber of f. For a Cartier
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divisor H on X, the f-base locus of H Bs (X/S, H) is defined by
Bs (X/S, H)=Supp (Coker (f*f,F_)x(H)- _)x(H))).

If Bs(X/S, H)=, H is called f-free. An element L of Div(X)(R)Q is called
f-semi-ample if there exists a positive integer m such that mL e Div (X)
and mL is f-free. For D e Div (X)(R)R, a decomposition D=P+N is called
an f-sectional decomposition if P, N e Div (X)(R)R, N is effective and there
exists a positive integer d such that the natural homomorphism f,F_)x([ndP])
--f,)z([ndD]) is bijective for every n_0. P (resp. N) is called the posi-
tive part (resp. negative part) of this decomposition. An f-sectional
decomposition D--P+N is called an f-Zariski decomposition (resp. good

f-Zariski decomposition) if the positive part P is f-net (resp. f-nef and f-
good). Let D be an element of Div (X)(R)R and x a point of X (not neces-
sarily closed). We set

q(X/S, D) Im (f*f.(x([nD])(R)F_)x(-- [nD])---->F_)x)
and

p(X/S, D)--inf ((ord (d(X/S, D)) + ord ({nD}))/n).
By the definition of tx(X/S, D), t(X/S, D) is upper semi-continuous with
respect to x e X.

2. Non.vanishing theorem and vanishing theorem. We refer the
reader to [3] for the notion concerning generalized normal crossing varie-
ties.

Theorem I (Non-vanishing theorem). Let X be a generalized normal
crossing variety, Z a projective variety and let f" X-Z be a morphism.
Let D be an element of Div (Z) and d a real number for every ] J, where
J is a finite subset of N. We assume the following.

(i) For all n>O, every connected component of X is mapped sur-
]ectively to. Z.

(ii) D ,ez dD is nef.
(iii) There exists .an element A of Div0(X)(R)R such that the support

of A is a generalized normal crossing divisor on X and A>=O.
(iv) There exists a positive number to and exists an ample element L

of Div (Z)(R)R such that tof*(D)+ A--Kz f*(L).
Then there are positive numbers tl and such that for any t> t saris-

lying I(td}--tdl for all ] e J, we have
H(X, (x(f*(, (td}D)+n))4:0.

Theorem 2 (Vanishing theorem). Let X be a non-singular algebraic
variety, S an algebraic variety and let f" X--.S be a proper sur]ective
morphism. Let L be an element of Div (X)(R)R such that L is f-nef and
f-good and {L}red has only normal crossings. Let E, E’ be elements of
Div (X) such that E and E’ are effective and E+E’ e l[mL] for some posi-.
tive integer m. Then homomorphisms induced by the natural homomor-
phism )x--F_)x(E)

Rf.C)z(Kz+L) >Rf.C)x(Kx/L/E)
are injective for all i>=O.
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Theorem 1 is a generalization of [3, Theorem 5.1] and [4, Theorem 3].
Theorem 2 is a relative version of [5].

3. Rationality and semi.ampleness.
Theorem 3. Let X be a non-singular algebraic variety, S an algebraic

variety and let f" X-S be a proper sur]ective morphism. Let be an
element of Div (X)(R)Q such that [z/]--0 and zlro has only normal crossings.
We assume that Kx-pzl has a good f-Zaristi decomposition Kx+A----P+N,
where P is the positive part of this decomposition. Then P e Div (X)(R)Q
and P is f-semi-ample.

Theorem 3 is a generalization of [4, Theorem 1]. Using Theorem 3,
we have that R(X, Kx-I)--=oH(X, )z([n(Kz-z/)])) is finitely generated
if X is complete and (X, Kx+z/)2. (cf. [6, Theorem (3, 1)].) We remark
that Cutkosky [1] gave an example of a big divisor which has no Zariski
decomposition with rational coefficients.

4. f.sectional decomposition. Let X be a non-singular variety, S an
algebraic variety and f" X--S be a proper surjective morphism. Let D
be an element ot Div(X)(R)R such that E(X/S, D)=/=. Then it is easy to
see that there are a finite number of prime divisors F such that/r(X/S, D)
0. Hence we can set
N(X/S, D) , pr(Z/S, D)F and P(X/S, D) D N(X/S, D).

T’: prime divisors

Proposition 4. Notation being the same as above, we have
( ) D----P(X/S, D)-N(X/S, D) is an f-sectional decomposition,
(ii) for any f-sectional decomposition D--P-N,

/x(X/ S, D) px(X/S, P) + ordx (N)
for all x e X, and

(iii) for any f-sectional decomposition D--P+N, NN(X/S, D).
We call the f-sectional decomposition D---P(X/S, D)+N(X/S, D) the

canonical f-sectional decomposition.
Theorem 5. Let X, S and f be the same as in Proposition 4. For

L e Div (X)(R)R, the following are equivalent.
i ) px(X/S, L)=0 fo.r all x e X.

(ii) L is f-her and f-good.
Theorem 5 means that L is almost base point free in the sense of

Goodman [2] if and only if L is nef and good.
Corollary 6 (Uniqueness of the good Zariski decomposition). Let X,

S and f be the same as in Proposition 4. Let D be an element of Div (X)
(R)R and D--P+N a good f-Zariski decomposition. Then P-P(X/S, D)
and N N(X/S, D).
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