25. The L L -boundedness of Pseudo-differential Operators Satisfying Estimates of Parabolic Type and Product Type. II

By Masao Yamazaki
Department of Mathematics, University of Tokyo
(Communicated by Kôsaku Yosida, M. J. A., April 12, 1985)

We stated in our previous paper (Yamazaki [6]) the L^{p}-boundedness of pseudo-differential operators with non-smooth symbols satisfying nonclassical estimates. A proof will be given in the forthcoming paper (Yamazaki [7]).

On the other hand, Bourdaud [1] and Nagase [4] generalized the $L^{p_{-}}$ boundedness theorem of Coifman-Meyer [2] and Muramatu-Nagase [3] on the classical symbols, by considering the combined effect of the x-regularity and the ξ-growth of the symbols.

Here we consider a similar effect where the symbols satisfy non-classical estimates. Our main theorem is an improvement of Theorem 4 of [7].

1. Notations and definitions. Let $n(1), \cdots, n(N)$ be positive integers. We put $n=n(1)+\cdots+n(N)$ and

$$
\Lambda(\nu)=\{l \in N ; n(1)+\cdots+n(\nu-1)+1 \leqq l \leqq n(1)+\cdots+n(\nu)\}
$$

for $\nu=1, \cdots, n$.
We regard \boldsymbol{R}^{n} as $\boldsymbol{R}^{n(1)} \times \cdots \times \boldsymbol{R}^{n(N)}$, and write $x \in \boldsymbol{N}^{n}$ as $x=\left(x^{(1)}, \cdots, x^{(N)}\right)$, where $x^{(\nu)}=\left(x_{l}\right)_{l \in \Lambda(\nu)}$. We also give a weight $M=\left(M^{(1)}, \cdots, M^{(N)}\right)$ to the coordinate variables of \boldsymbol{R}^{n}, where each $M^{(\nu)}=\left(m_{l}\right)_{l \in \Lambda(\nu)}$ satisfies the condition $\min _{l \in \Lambda(\nu)} m_{l}=1$.

Next, for every $\nu=1, \cdots, N$, we define a function $[y]_{\nu}$ of $y=\left(y_{l}\right)_{l \in \Lambda(\nu)}$ $\in \boldsymbol{R}^{n(\nu)}$ with values in $\boldsymbol{R}^{+}=\{t ; t \geqq 0\}$ as follows. We put [0] $=0$, and if $y \neq 0$, let $[y]_{\nu}$ denote the unique positive root of the equation $\sum_{l \in \Lambda(\nu)} t^{-2 m_{l}} y_{l}^{2}=1$ with respect to t.

Further, for $\nu=1,2, \cdots, N$ and $y \in R^{n(\nu)}$, let $\Delta_{y}^{(\nu)}$ denote the difference of the first order with respect to the ν-th part of the coordinate variables ; that is, we put

$$
\Delta_{\nu}^{(\nu)} f(x)=f\left(x^{(1)}, \cdots, x^{(\nu)}-y, \cdots, x^{(N)}\right)-f(x)
$$

for a function $f(x)$ on \boldsymbol{R}^{n}. We also fix a positive number L.
Now we introduce a notion to state our main theorem.
Definition. We call a family of functions $\left\{\omega_{1}\left(s_{1} ; t_{1}\right), \omega_{2}\left(s_{1}, s_{2} ; t_{1}, t_{2}\right)\right.$, $\left.\cdots, \omega_{N}\left(s_{1}, s_{2}, \cdots, s_{N} ; t_{1}, t_{2}, \cdots, t_{N}\right)\right\}$ a multiple modulus of growth and continuity if it satisfies the following four conditions:

1) For every ν, the function $\omega_{\nu}\left(s_{1}, \cdots, s_{\nu} ; t_{1}, \cdots, t_{\nu}\right)$ is a function on $\left(\boldsymbol{R}^{+}\right)^{2 \nu}$ into \boldsymbol{R}^{+}, and is monotone-increasing and concave with respect to each t_{k}.
2) There exists a constant C such that the inequality

$$
\omega_{\nu}\left(s_{1}^{\prime}, s_{2}, \cdots, s_{\nu} ; t_{1}, \cdots, t_{\nu}\right) \leqq C \omega_{\nu}\left(s_{1}, s_{2}, \cdots, s_{\nu} ; t_{1}, \cdots, t_{\nu}\right)
$$

holds for $s_{1} / 2 \leqq s_{1}^{\prime} \leqq 2 s_{1}$.
3) $\omega_{\nu}\left(s_{1}, \cdots, s_{\nu} ; t_{1}, \cdots, t_{\nu}\right)$ is invariant under any permutation of the ordered pairs $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right), \cdots,\left(s_{\nu}, t_{\nu}\right)$.
4) For each $1 \leqq \mu<\nu \leqq N$, we have

$$
\omega_{\nu}\left(s_{1}, \cdots, s_{\nu} ; t_{1}, \cdots, t_{\nu}\right) \leqq 2^{L(\nu-\mu)} \omega_{\mu}\left(s_{1}, \cdots, s_{\mu} ; t_{1}, \cdots, t_{\mu}\right) .
$$

Then, given a multiple modulus of growth and continuity $\left\{\omega_{1}\left(s_{1} ; t_{1}\right)\right.$, $\left.\cdots, \omega_{N}\left(s_{1}, \cdots, s_{N} ; t_{1}, \cdots, t_{N}\right)\right\}$, consider the conditions (${ }^{*} \mu$) for $\mu=0,1, \cdots, N$ as follows:
(*0) For every $\nu=1,2, \cdots, N, l \in \Lambda(\nu)$ and $k=0,1, \cdots, n+1$, we have $\left|\partial_{\xi_{l}}^{k} P(x, \xi)\right| \leqq C\left(1+\left[\xi^{(\nu)}\right]_{\nu}\right)^{-m_{l} k}$.
$\left({ }^{*} \mu\right)(\mu=1, \cdots, N) \quad$ For every $\nu=1,2, \cdots, N, l \in \Lambda(\nu), 1 \leqq \nu(1)<\nu(2)<\cdots$ $<\nu(\mu) \leqq N, y_{1} \in \boldsymbol{R}^{n(\nu(1))}, \cdots, y_{\mu} \in \boldsymbol{R}^{n \nu \nu(\mu))}, l \in \Lambda(\nu)$ and $k=0,1, \cdots, n+1$, we have (1)

$$
\begin{aligned}
& \left|\left(U_{\left.y_{1}(1)\right)}^{\left.()^{L}\right)}\right)^{L}\left(\cdots\left(\left(U_{\left.y_{\mu}(\mu)\right)}^{(\nu) L}\right)^{L}\left(\partial_{\xi L}^{k} P(x, \xi)\right)\right) \cdots\right)\right| \\
& \quad \leqq C \omega_{\mu}\left(1+\left[\xi^{(\nu(1))}\right]_{\nu(1)}^{(1)}, \cdots, 1+\left[\xi^{(\nu(\mu))}\right]_{\nu(\mu)} ;\right. \\
& \left.\quad\left[y_{1}\right]_{\nu(1)}, \cdots,\left[y_{\mu}\right]_{\nu(\mu)}\right) \times\left(1+\left[\xi^{(\nu)}\right]_{\nu}\right)^{-m_{l} l} .
\end{aligned}
$$

2. Statement of the theorem and remarks. Our main result is the following theorem.

Theorem. The following three conditions concerning moduli of growth and continuity are equivalent :

1) $\int_{0}^{1} \cdots \int_{0}^{1} \omega_{\nu}\left(\frac{1}{t_{1}}, \cdots, \frac{1}{t_{\nu}} ; t_{1}, \cdots, t_{\nu}\right)^{2} \cdot \frac{d t_{1} \cdots d t_{\nu}}{t_{1} \cdots t_{\nu}}<\infty$
holds for every $\nu=1, \cdots, N$.
2) If a symbol $P(x, \xi)$ satisfies the conditions ($\left.{ }^{*} \mu\right)$ for all $\mu=0,1, \cdots, N$, then the associated pseudo-differential operator $P(x, D)$ defined by the formula

$$
P(x, D) u(x)=(2 \pi)^{-n} \int_{R^{n}} \exp (i x \cdot \xi) P(x, \xi) \hat{u}(\xi) d \xi
$$

is bounded on $L^{p}\left(\boldsymbol{R}^{n}\right)$ for every $1<p<\infty$.
3) For every symbol $P(x, \xi)$ satisfying the conditions ($\left.{ }^{*} \mu\right)$ for all $\mu=0,1, \cdots, N$, there exists $1<p<\infty$ such that the associated operator $P(x, D)$ is bounded on $L^{p}\left(\boldsymbol{R}^{n}\right)$.

Remark 1. If $\left\{\omega_{1}\left(t_{1}\right), \cdots, \omega_{N}\left(t_{1}, \cdots, t_{N}\right)\right\}$ is a modulus of continuity in the sense of Yamazaki [6], [7], and if $\Omega_{1}\left(s_{1}\right), \cdots, \Omega_{N}\left(s_{1}, \cdots, s_{N}\right)$ are functions satisfying the inequalities such as $\Omega_{1}\left(s_{1}^{\prime}\right) \leqq C \Omega_{1}\left(s_{1}\right)$ for $s_{1} / 2 \leqq s_{1}^{\prime} \leqq 2 s_{1}$, then $\left\{2^{L} \Omega_{1}\left(s_{1}\right) \omega_{1}\left(t_{1}\right), \cdots, 2^{L N} \Omega_{N}\left(s_{1}, \cdots, s_{N}\right) \omega_{N}\left(t_{1}, \cdots, t_{N}\right)\right\}$ is a multiple modulus of growth and continuity.

In case $N=L=1$ and $M^{(1)}=(1, \cdots, 1)$, the main theorem with this type of multiple modulus of growth and continuity coincides with Theorem 2 of Bourdaud [1]. Yabuta [5] also considered symbols satisfying estimates of this type, and obtained boundedness properties on more general function spaces.

Remark 2. As a special case in the above remark, consider the case
$\Omega_{\nu} \equiv 1$ for all ν. Then we obtain Theorem 3 of Yamazaki [7].
Remark 3. Theorem 4 of [7] asserts the L^{p}-boundedness of the operators with symbols satisfying the condition (${ }^{*} \mu$) with (1) replaced by

$$
\begin{aligned}
& \mid\left(\Delta_{\left.y_{1}(1)\right)}^{(\nu)}\right)^{L}\left(\cdots\left(\left(\Delta_{\left.y_{\mu}(\mu)\right)}^{(\nu) L}\left(\partial_{\xi}^{k} P(x, \xi)\right)\right) \cdots\right) \mid\right. \\
& \quad \leqq C \omega_{\mu}\left(\left|y_{1}\right|, \cdots,\left|y_{\mu}\right|\right) \Omega\left(\left[\xi^{(1)}\right]_{1}\right) \times \cdots \times \Omega\left(\left[\xi^{(N)}\right]_{N}\right)\left(1+\left[\xi^{(\nu)}\right]_{\nu}\right)^{-m_{l} k} .
\end{aligned}
$$

Remark 4. Let $\left\{\omega_{1}, \cdots, \omega_{N}\right\}$ be the same as in Remark 1, and let δ be a constant such that $0 \leqq \delta<1$. Suppose that $P(x, \xi)$ satisfies the condition (${ }^{*} \mu$) with the estimate (1) replaced by

$$
\begin{align*}
& \left|\left(\Delta_{y_{1}}^{(\nu(1))}\right)^{L}\left(\cdots\left(\left(\Delta_{y_{\mu}}^{(\nu(\mu))}\right)^{L}\left(\partial_{\xi}^{k} P(x, \xi)\right)\right) \cdots\right)\right| \tag{2}\\
& \leqq C \omega_{\mu}\left(\left[y_{1}\right]_{\nu(1)} \cdot\left(1+\left[\xi^{(\nu(1))}\right]_{\nu(1)}\right)^{\delta}, \cdots,\right. \\
& \left.\left[y_{\mu}\right]_{\nu(\mu)}\left(1+\left[\xi^{(\nu(\mu)}\right]_{\nu(\mu)}\right)^{\delta}\right) \cdot\left(1+\left[\xi^{(\nu)}\right]_{\nu}\right)^{-m_{l} k} \text {. }
\end{align*}
$$

Then it follows that $P(x, \xi)$ satisfies the condition (${ }^{*} \mu$) with the multiple modulus of growth and continuity $\left\{\omega_{1}\left(s_{1}^{s} t_{1}\right), \cdots, \omega_{N}\left(s_{1}^{s} t_{1}, \cdots, s_{N}^{\delta} t_{N}\right)\right\}$. But this satisfies the condition 1) of the main theorem if and only if

$$
\int_{0}^{1} \cdots \int_{0}^{1} t_{1}^{-1} \cdots t_{\nu}^{-1} \omega_{\nu}\left(t_{1}, \cdots, t_{\nu}\right)^{2} d t_{1} \cdots d t_{\nu}<\infty
$$

holds for every ν. Thus we obtain a result on the L^{p}-boundedness of the operators with symbols satisfying the estimates (2).

In case $N=L=1$ and $M^{(1)}=(1, \cdots, 1)$, Nagase [4] considered the symbols satisfying similar estimates as above and weaker differentiability conditions with respect to ξ, and obtained the L^{p}-boundedness for $2 \leqq p<\infty$.

Remark 5. If $\omega_{1}(s ; t)$ satisfies $\omega_{1}\left(t^{-1} ; t\right) \leqq \omega_{1}\left(t^{\prime-1} ; t^{\prime}\right)$ for $t \leqq t^{\prime}$ and

$$
\int_{0}^{1} t^{-1}(-\log t)^{N-1} \omega_{1}\left(t^{-1} ; t\right)^{2} d t<\infty
$$

any multiple modulus of growth and continuity satisfies the condition 1) of the main theorem automatically. (See [6] or [7].)
3. Outline of the proof. It is clear that the operator constructed in the same way as in Section 4 of [7] implies the necessity of the condition 1). Hence we have only to show the sufficiency. We employ the same notations as in [7].

For a symbol $P(x, \xi)$ satisfying the conditions (1. μ) for $\mu=0,1, \ldots, N$, let $a_{K, h}(x)$ and $a_{K, h, A}(x)$ be the same as in Section 5 of [7]. Then, in the same way as we have obtained the estimate (5.7) of [7], we obtain
$\left|\left(\Delta_{y_{1}}^{(1)}\right)^{L}\left(\cdots\left(\left(\Delta_{y_{\nu}}^{(\nu)}\right)^{L} a_{K, h}(x)\right) \cdots\right)\right|$

$$
\leqq C \omega_{\nu}\left(2^{k_{1}}, \cdots, 2^{k_{\nu}} ;\left[y_{1}\right]_{1}, \cdots,\left[y_{v}\right]_{\nu}\right)\left(1+\left|h_{1}\right|^{n+1}+\cdots+\left|h_{n}\right|^{n+1}\right)^{-1} .
$$

Suppose that $a(j)=0$ for $j \leqq \nu$ and that $a(j)>0$ for $j>\nu$. Then, in view of the monotonicity and the concavity of ω_{ν}, we obtain

$$
\begin{aligned}
\left|a_{K, h, A}(x)\right| & \leqq C \int \omega_{\nu}\left(2^{k_{1}}, \cdots, 2^{k_{\nu}} ;\left[2^{-k_{1} M M^{(1)}} y_{1}\right]_{1}, \cdots,\left[2^{-k_{\nu} M(\nu)} y_{\nu}\right]_{\nu}\right) \\
& \times \prod_{j=1}^{N}\left|F^{-1}\left[\Psi\left(4\left[\xi^{(j)}\right]_{j}\right)\right]\left(y_{j}\right)\right| d y \cdot\left(1+\left|h_{1}\right|^{n+1}+\cdots+\left|h_{n}\right|^{n+1}\right)^{-1} \\
& \leqq C\left(1+\left|h_{1}\right|^{n+1}+\cdots+\left|h_{n}\right|^{n+1}\right)^{-1} \omega_{\nu}\left(2^{k_{1}}, \cdots, 2^{k_{\nu}} ; 2^{-k_{1}}, \cdots, 2^{-k_{\nu}}\right)
\end{aligned}
$$

in the same way as in Section 5 of [7]. Hence it suffices to show

$$
\sum_{k \in N^{\nu}} \omega_{\nu}\left(2^{k_{1}}, \cdots, 2^{k_{\nu}} ; 2^{-k_{1}}, \cdots, 2^{-k_{\nu}}\right)^{2}<\infty .
$$

But this follows from the condition 1) of the main theorem.
This completes the proof.

Acknowledgement. The author expresses his sincere gratitude to Professor K. Yabuta for his valuable suggestion.

References

[1] G. Bourdaud: L^{p}-estimates for certain non-regular pseudo-differential operators. Comm. in Partial Differential Equations, 7, 1023-1033 (1982).
[2] R. R. Coifman et Y. Meyer: Au-delà des opérateurs pseudo-différentiels. Astérisque, 57, Soc. Math. France, Paris (1978).
[3] T. Muramatu and M. Nagase: On sufficient conditions for the boundedness of pseudo-differential operators. Proc. Japan Acad., 55A, 293-296 (1979).
[4] M. Nagase: On some classes of L^{p}-bounded pseudo-differential operators (to appear).
[5] K. Yabuta: Calderón-Zygmund operators and pseudo-differential operators (to appear).
[6] M. Yamazaki: The L^{p}-boundedness of pseudo-differential operators satisfying estimates of parabolic type and product type. Proc. Japan Acad., 60A, 279-282 (1984).
[7] -: The L^{p}-boundedness of pseudo-differential operators with estimates of parabolic type and product type (to appear in J. Math. Soc. Japan).

