
8 Proc. Japan Acad., 61, Ser. A (1985) [Vol. 61(A),

3, On Topological Dynamical Systems with
Discrete Spectrum

By Koukichi SAKAI
Department of Mathematics, Kagoshima University

(Communicated by KSsaku YOSIDA, M. ;. A., Jan. 12, 1985)

1. Main results. Throughout this note (X, T) is a topological
dynamical system, i.e., a pair of a compact Hausdorff space X and a con-
tinuous map T of X to itself. Let C(X) be the Banach space of all con-
tinuous complex functions on X with the usual supremum norm. By
E(X, T)[resp. a(X, T)] we denote the set of all eigenfunctions [resp. eigen-
values] of Ur defined by Ur(f)-fo T(fe C(X)). We say that (X, T)has
discrete spectrum if the norm closed linear span of E(X, T) is identical
with C(X). For any fixed x e X we put OT(X)--{TnX; n e/} and O(x)
={Tnx; n e Z+}, where N[Z/] is the set of all nonnegative [positive] in-
tegers. (X, T) is said to be topologically transitive if there exists some
10 e X for which OT(P) is dense in X. We distinguish the topological tran-
sitivity for (X, T) into the following two cases"

(A) There exists some p e X for which O(p) is dense in X.
(B) There exists some p e X for which Or(p) is dense in X, and O(x)

is not dense in X for all x e X.
The purpose of this paper is to clarify the structure of topologically transi-
tive (X, T)with discrete spectrum. We say that (X, T) is topologically
conjugate to. a topological dynamical system (Y, S), in symbol (X, T)_ (Y, S),
if there exists a homeomorphism q of X onto Y such that q T=S . Let
(X, T)-(Y, S). Then a(X, T)=a(Y, S), (X, T) has discrete spectrum if and
only if so has (Y,S), and further (X, T) satisfies (A)[(B)] if and only if
(Y, S) satisfies (A) [(B)].

Let G be a compact abelian semigroup, a e G and L the translation
on G defined by a. Then we get a topological dynamical system (G, L).
Let G=G U (e} be the adjunction of an identity e to G. This is also a com-
pact abelian semigroup in which e is an isolated point. A semicharacter
of G is a continuous function X on G such that X(g)=/=0 for some g e G and
X(st)=(s)(t) for all s, t in G. By we denote the set of all semicharac-
ters of G. G is said to be separative if for any distinct s, t e G there exists
X e with X(s):/=X(t). As seen easily G, is separative if and only if so is G.
Further if G is separative, then the norm closed linear span of is iden-
tical with C(G). If there exists some a e G such that (a; n e Z+) is dense
in G, then G is called a monotetic semigroup with the generator a. Under
the above notations and terminology our main results are stated as follows.

Theorem 1. (X, T) has discrete spectrum and satisfies the condition
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(A) if and only if there exists a compact monothetic group G such that
(X, T)(G, La), where a is the generator of G.

Theorem 2. (X, T) has discrete spectrum and satisfies the condition
(B) if and o.nly if there exists a separative compact monothetic semigroup
G such that (X, T)-(Ge, La), where a is the generator of G.

The above theorems are generalizations of Halmos and von Neumann
[1, Theorem 6] (cf. [4, Theorem 5.18]).

Remarks. (1) On the structure of compact monothetic semigroups
it is investigated in detail by E. Hewitt [2]. We conclude from [2, p. 456]
that a compact monothetic semigroup is separative if and only if it is of
type I or type III in the sense of [2, Main theorem].

(2) If (X, T)has discrete spectrum and satisfies (A), then it ollows
from Theorem 1 that T must be a homeomorphism.

(3) If (X, T) has discrete spectrum and satisfies (B), then we see from
Theorem 2 that the point p as in (B) is unique and TX=X\

2. Sketch of proof. Let G be a separative compact monothetic
semigroup with a generator a and G the adjunction of the identity e to G.
Then (G, L) satisfies (B) for T--L and p=e. Further we see easily that
a unction f e C(G) is in E(G, L) if and only if it is given in. the orm
f=c;, where c is a nonzero constant and Z e . Since G is also separa-
tive, it follows from the Stone-Weierstrass theorem that (G, L) has dis-
crete spectrum. Thus the "if" part of Theorem 2 is proved. Similarly
the "if" part o Theorem 1 is shown.

Conversely suppose that (X, T) has discrete spectrum and Or(P) is dense
in X for some p e X. Let 1I be the uniformity of X which induces the
original topology of X. Then by the same way as in [3, Theorem 1], the
amily {T n e N} of iterations of T is equicontinuous, i.e., or any index
e 1I there corresponds to. fle 1 such that Tfl or all n e N. Let us define

a map o Or(p)Or(p) to Or(p) by Tp,Tnp=T/p (m, n N). Then
under the multiplication ,, OT(P) becomes an abelian semigroup with the
identity p. For any a e 1 we take fl," in lI such that floa and
or all n e N. I (Tp, Tp) e and (Tp, Tp) e , then we have (T/p,
T/p) e fl, (T/p, T/np) e fl, and hence (T/p, T+np)=(Tp.Tp, Tp.Tnp)
e a. So that the multiplication, on Or(p) s uniformly continuous and
can be extended uniquely to a continuous map of XX to X. Hence X
is regarded as a compact abelian semigroup, denoted by Gr, under the
multiplication .. Putting an=Tp (ne Z/) and e=a--p, we have T(a)
--T+lp--a.an(ne N). This shows that T is the translation L on Gr.
Therefore (X, T)-(Gr, L). Since (X, T) has discrete spectrum, it ollows
that (Gr, L) has also discrete spectrum and Gr is separative. Let G be
the closure of {a;ne Z/}. Then it is a separative compact monothetic
subsemigroup of Gr with the generator a. If (X, T) satisfies (A), then
Gr=G and G becomes a compact monothetic group, because any compact
monothetic semigroup with identity is a topological group (cf. [2]). On
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the other hand if (X, T) satisfies (B), then Gr--G U {e}. Consequently we
get the "only if" parts of Theorems 1 and 2.

3. Conjugacy theorem. Let (X, T), G and a e G be as in Theorem
1 [Theorem 2]. Then we have a(X, T)-- {Z(a) Z e }[a(X, T)-- {0} {Z(a)
Z e }]. On the other hand let G and G be separative, compact monothetic
semigroups with generators a and a respectively. Then we see from the
discussion in [2, p. 456] that G and G are isomorphic if {(a); Z e G}

{Z(a) ;Z e }. Accordingly from Theorems 1 and 2 we obtain the follow-
ing conjugacy theorem, which is an analogue of Theorem 5.19 in [4].

Theorem 3. Let (X, T) and (Y, S) be topologically transitive topolo-
gical dynamical systems with discrete spectrum. Then (X, T)-(Y, S) if
and only if a(X, T)--a(Y, S).
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