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Introduction. Throughout this note, R means a commutative ring
with identity and (R) the category of finitely generated unitary R-modules.
Let S be an additive system, i.e. an algebraic system in which addition is
defined. A function L from C(R) to S will be called an S-valued additive
function over R, i or any exact sequence O--M’-M-M"-+O in C(R), the
relation L(M)--L(M’)+L(M")holds. When we want to emphasize that L
is over R, we shall write L instead of L. In [6], [9] such unctions are
studied for the case S--R U{c}. In this note, we study exclusively the
case S--Z. So we shall simply write "additive functions" or Z-valued
additive 2unctions. Some arguments in [6], [9] are, however, valid also in
our case.

1o Extension of additive functions.
Theorem 1.1. Let R be noetherian, a an ideal of R and n a natural

number. Put A--R/a, B--R/an. Then any additive function L over A
can be extended to B, i.e. there is .an additive function LB over B, such that
LA(M) LB(M) for any A-module M.

Pro.of. We write the proo of the case n--2, since the general case
ollows easily by induction. So we put B--R/a. Let N be a B-module.
We have an exact sequence

0 ;aN ;N ;N/aN 0.
Since a(aN)--O and a(N/aN)--O, LA(aN) and La(N/aN) are defined. Put
L,(N)--L(aN) + L.dN/aN). If there is another exact sequence of B-
modules

0 >N1----->N N. >0
such that aN--aN=O, then we have a commutative diagram with exact
rows

0 aN N N/aN 0

0 >N1 >N " N 30
From, his diagram, we have Ker 9 - Coker +. Since N and N/aN are
A-modules, Ker 9 and Coker + are also A-modules. Thus we have

La(Ker 9) La(N/aN) La(N2) L(Coker +) La(N) L(aN),
and hence

L(N/aN)+ La(aN) La(N)+L(N).
Now we prove the additiviy of L. Let here be given an exac sequence
of B-modules



52 T. IRITE [Vol. 61 (A),

0 ;M ;M. ;M ;0.

From this exact sequence, we obtain a commutative diagram, with exact
rows and columns"

0 0 0

0 >K > aM > aM >0

0 >M > M > M >0

0 0 0
where K=Ker , K=Ker q are A-modules. Hence. we have

L(M.) L(aM)+L(M./aM)
L(K)+L(aM)+L(K)+L(M/aM)

=L(M)+L(Ma).
Theorem 1.2. Let R be noetherian. Then any additive function L

over R can be extended to an additive function L3 over the polynomial
ring R[x] over R with one valuable x, i.e. there exists an additive function
L over R[x] such that

Ln(M) L 3(MR[x])

for any M e C(R).
Proof. The. following definition of L3 is as in [4, p. 407]. Let K

be a Koszul complex

>0 >R[x] >R[x] >0 >.

Put K(x, N)=K N for any N e C(R[x]). We define, or any N e C(R[x]),
[x]

L(N)--Z(H(K(x, N)))where the right hand side is the. Euler character-
istic of the Koszul complex K(x, N) [cf. 8], i.e.

L(N)--L(N/xN)--L((O" x)s).
ThenL is an additive function over R[x]. If M e C(R), then L(M
(R[x])=L(M) since (0" x) in MR[x] is zero.

Note that L can be extended to L,,..., by induction on n.
2. Trivial additive functions. Let R be an integral domain and c

any integer. The function c rankM is obviously an additive function
over R. Additive function of this type will be called trivial.

Theorem 2.1. If R is a regular local ring, any additive function over
R is trivial and moreover L(M)--L(R)rank M for M e C(R).

To prove this, we use the following lemma.
Lemma 2.2. If M e C(R) has a finite free resolution and if there is a

non zero-devisor s of R such that sM=O, then L(M)=O for any additive
function L over R.
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Proof. Let
0 ;Ft: F_ -;... ;F ;F0 ;M 0

be a free resolution of M. From this exact sequence we have
L(M) L(Fo) L(F)+ + (-- 1)tL(Ft)

by the additivity of L. Let S be the set of all non zero-divisors of R.
The hypothesis sM--O implies that the sequence

0 S-F ;. S-Fo 0
is exact. Hence --0 (--1) rank F--0. Since L(F)= L(R) rank F, we
have L(M)=O.

Since, for an R-sequence x, ..., x, the Koszul complex K(R:,...,t) is
a ree resolution of R/(x, ..., x)R, we have"

Corollary 2.:. Let x, ..., xt be an R.sequence, t>=l. Then we have
L(R/(x, ..., xt)R)--0 for any additive function L over R.

Proof of Theorem 2.1. Let N be submodules of M such that

M--NoN. N=O and
N/N+’R/P

where P e Spec R or all i, O<_i<_t--1. Then we have L(M)--= L(R/P)
by the additivity of L. If P =/=0, then we have L(R/P)--O by Lemma 2.2.
Let m be the number of modules N/N/ with the property that N/N/
_R in the system {N/N/}__o....._. Then m=rank M since rank M is
the dimension of S-M over K S-R, where S R- {0}.

Remark. This result is proved by the fact that the Grothendieck
group Ko(R) is isomorphic to Z.

Theorem 2.4. Let (R, m,..., m) be a semi-local ring of dimension
2. If R is a unique factorization domain, any additive function over R is
trivial and L(M)--L(R) rank M for M e (R).

For the proof, we use the following lemma.
Lemma 2.. Let (R, nh, ..., ) be a semi-local ring of dim R 1.

Then we have L(R/n)=O for any n with ht rl and for any additive

function L over R.
Proof. Let P e Spec R with ht n/P--1 and x e m--([_) r U P). We

have an exact sequence

0 R/P R/P ;R/(P,x) ;0.

From this exact sequence, we have L(R/(P, x))--0. Since (P, x) is r-
primary, there are submodules N of R/(P, x) such that

R/(P, x)=NoN Nt=O
with N/N/R/mt for all ], O<=]<=t--1. This implies that O--L(R/(p, x))

tL(R/n), hence L(R/n) =0.
Proof of Theorem 2.4. Let P be a prime ideal of height 1. Since R

is a U.F.D., P is principal, say P--(x). The exact sequence

0 ;R
x
;R "R/P

implies L(R/P)=O, for any additive unction L. Lemma 2.5 and this fact
imply the desired result in the same way as in [6].
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Proposition 2.6. Any additive function over a polynomial ring R
--/c[xl,..., Xn] over a field k is trivial.

The proof is the same as in Theorem 2.1.
The following result was suggested by K. Hirata.
Theorem 2.7. Let R be a noetherian integral domain, then the ad-

ditive function LEx constructed in Theorem 1.2 is trivial if L is trivial.
Proof. It suffices to prove that LA(A/P)--O or any non-zero prime

idealPof A where. A=R[x]. Let PeSpecA and P=/=0. If Px, put
M--AlP. Then we have xM=O, and hence M/xM=M and (0" x)=M.
This implies L(M)=0. If Px, put M=A/P. Then we. have M/xM
=A/(P,x) and (0"x)=0. If we put a=R(P,x), then a=/=0. Since
A/(P, x) is isomorphic to R/a as R-module, we have LA(M)=LR(R/a)=O.

3. Non.trivial additive functions. We cite the ollowing result o
S. Kondo (unpublished).

Theorem 3.1. Let R be a Dedekind domain, Ko the reduced group of
the Grothendieck group of C(R). Then the following conditions (i), (ii) are
equivalent.

( ) Any additive function over R is trivial.
(ii) Hom (K-0, Z)=0.
Now it is known that Ko is isomorphic to the ideal class group of R,

and that there exists R such that this group is isomorphic to any given
abelian group. This means that (ii)does not hold in general, i.e. non-
trivial additive functions exist over certain Dedekind domains. Theorem
3.1 holds or any integral domain R but it is unknown to the author
whether non-trivial additive function exists in other case.
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