11. The Robin Problems on Domains with Many Tiny Holes

By Satoshi KAIZU

Department of Information Mathematics, University of Electro-Communications

(Communicated by Kôsaku Yosida, M. J. A., Feb. 12, 1985)

1. Introduction. Let Ω be a bounded domain of \mathbb{R}^N , $N \ge 2$, with smooth boundary Γ and with the outer unit normal vector ν_{Γ} on Γ . Let \mathbb{R}^N be divided into an infinitely many number of cubes C_i^{ϵ} , $i \in \mathbb{N}$, with volume of $(2\varepsilon)^N$ and let $B_i(r^{\epsilon})$ be a closed ball of radius r^{ϵ} ($<\varepsilon$) centered in C_i^{ϵ} . From Ω we remove all such balls and obtain a $D^{\epsilon}(\subset \Omega)$ with n^{ϵ} holes. Under the case $n^{\epsilon} \to \infty$, $r^{\epsilon} \to 0$, a parameter, which determines the behavior of the Laplacian on D^{ϵ} with the Dirichlet condition, is known by M. Kac [2], J. Rauch and M. Taylor [3], D. Cioranescu and F. Murat [1]. That parameter is given by $\lim n^{\epsilon}(r^{\epsilon})^{N-2}$ for $N \ge 3$ and $\lim n^{\epsilon}/|\log r^{\epsilon}|$ for N=2, ε means values of a fixed sequence decreasing to zero. Now, we show a different parameter is important for the Robin problems.

From Ω we remove all balls $B_i(r^{\epsilon})$ such that dist $(B_i(r^{\epsilon}), \Gamma) \ge \epsilon$ and obtain R^{ϵ} with n^{ϵ} holes. Let α be a positive constant and ν^{ϵ} the outer unit normal vector on ∂R^{ϵ} . We consider the Robin problem: for $f \in L^2(\Omega)$ find $u^{\epsilon} \in H^1(R^{\epsilon})$ such that

(1)
$$\begin{aligned} -\Delta u^{\varepsilon} = f \quad \text{a.e. in } R^{\varepsilon}, \\ \frac{\partial u^{\varepsilon}}{\partial v^{\varepsilon}} + \alpha u^{\varepsilon} = 0 \quad \text{a.e. on } \partial R^{\varepsilon} \end{aligned}$$

Theorem 1. Let u^{ϵ} be the solution of (1) and $\tilde{u}^{\epsilon} \in H^{1}(\Omega)$ an extension of u^{ϵ} to be harmonic in F^{ϵ} , $F^{\epsilon} = \Omega \setminus R^{\epsilon}$. Assume that $r^{\epsilon} \to 0$ and $n^{\epsilon} \to \infty$ with the conditions $\eta = \lim n^{\epsilon}(r^{\epsilon})^{N-1}$, $0 < \eta < \infty$. Then \tilde{u}^{ϵ} converges weakly in $H^{1}(\Omega)$ to the solution of the problem:

(2) $-\Delta u + \frac{\alpha S_N \eta u}{|\Omega|} = f \quad \text{a.e. in } \Omega,$ $\frac{\partial u}{\partial \nu_{\Gamma}} + \alpha u = 0 \quad \text{a.e. on } \Gamma.$

Here $|\Omega|$ means the volume of Ω and S_N means the surface area of the unit sphere of \mathbf{R}^N .

2. Abstract scheme. Let Ω be the same domain as in Section 1. We introduce a certain limit of the minus Laplacian, which corresponds to one of versions for theorem 1.2 of Cioranescu-Murat [1] in the case of Robin condition.

For a subdomain G of Ω we regard all functions of $L^2(G)$ as functions of $L^2(\Omega)$ vanishing outside G. In this section $R^{\mathfrak{s}}$ means a subdomain of Ω satisfying (a.1) below. Let $a^{\mathfrak{s}}: H^1(R^{\mathfrak{s}}) \times H^1(R^{\mathfrak{s}}) \to \mathbb{R}$ be a bilinear form defined by

$$a^{\varepsilon}(v,w) = \int_{R^{\varepsilon}} \nabla v \cdot \nabla w dx + \alpha \int_{\partial R^{\varepsilon}} v w d\sigma.$$

Let us consider (1). For (1) we have

(3)
$$a^{\varepsilon}(u^{\varepsilon}, v) = \int_{R^{\varepsilon}} f v dx$$
 for all $v \in H^{1}(R^{\varepsilon})$.

We consider the behavior of the solution of (3). We use the norm of $H^{i}(R^{\epsilon})$ defined by $\|v\|_{H^{1}(R^{\epsilon})}^{2} = \|\nabla v\|_{L^{2}(R^{\epsilon})}^{2} + \|v\|_{L^{2}(R^{\epsilon})}^{2}$.

We set $F^{\epsilon} = \Omega \setminus R^{\epsilon}$. We assume the following conditions.

(a.1) F^{ϵ} does not meet Γ and its interior kernel is a nonempty set with locally Lipschitz boundary.

(a.2) There exists a family of extension maps $T^{\varepsilon}: H^{1}(\mathbb{R}^{\varepsilon}) \rightarrow H^{1}(\Omega)$ such that

- (i) $\limsup ||T^{\varepsilon}||_{\mathcal{L}(H^1(R^{\varepsilon}),H^1(\mathcal{G}))} < \infty$,
- (ii) if limsup $a^{\varepsilon}(v^{\varepsilon}, v^{\varepsilon}) < \infty$ then $T^{\varepsilon}v^{\varepsilon} v^{\varepsilon} \rightarrow 0$ in $L^{2}(\Omega)$.
- (a.3) There exists a constant c_1 such that

 $a^{\varepsilon}(v,v) \ge c_1 \|v\|_{H^1(R^{\epsilon})}^2$ for all $v \in H^1(R^{\epsilon})$ and $\varepsilon > 0$.

- (a.4) There exists a family $\{\theta^{\epsilon} \in W^{1,\infty}(R^{\epsilon})\}_{\epsilon}$ satisfying the conditions below.
 - (i) $\theta^{\epsilon} = 1$ a.e. on Γ .
 - (ii) Set $\tilde{\theta}^{\varepsilon} = T^{\varepsilon} \theta^{\varepsilon}$. Then $\tilde{\theta}^{\varepsilon} \xrightarrow{w} 1$ in $H^{1}(\Omega)$ as $\varepsilon \to 0$.
 - (iii) limsup $a^{\varepsilon}(\theta^{\varepsilon}, \theta^{\varepsilon}) < \infty$.
 - (iv) There exists $\overline{\eta} \in W^{1,1}(\Omega)^*$ such that

$$-\nabla \cdot (\chi^{\epsilon} \nabla \theta^{\epsilon}) + \alpha \theta^{\epsilon} \delta(\partial F^{\epsilon}) \xrightarrow{s} \overline{\eta} \qquad \text{in } W^{1,1}(\Omega)^{*}$$

 $W^{1,1}(\Omega)^*$ means the dual space of $W^{1,1}(\Omega)$, χ^{ϵ} means the characteristic function of R^{ϵ} and $\delta(\partial F^{\epsilon})$ means the measure defined by

$$\langle \delta(\partial F^{\epsilon}), v
angle = \int_{\partial F^{\epsilon}} v d\sigma \qquad ext{for all } v \in W^{1,1}(arOmega).$$

Theorem 2. Let u^{ϵ} be the solution of (3) and set $\tilde{u}^{\epsilon} = T^{\epsilon}u^{\epsilon}$. Under all the conditions from (a.1) to (a.4), \tilde{u}^{ϵ} converges weakly in $H^{1}(\Omega)$ to u, where u is the solution of

(4)
$$\begin{array}{c} -\Delta u + \bar{\eta} u = f & \text{a.e. in } \Omega, \\ \frac{\partial u}{\partial \nu_{\tau}} + \alpha u = 0 & \text{a.e. on } \Gamma. \end{array}$$

Proof. Substituting $v = u^{\varepsilon}$ into (3) and using (a.2) and (a.3) we can see $\limsup \|\tilde{u}^{\varepsilon}\|_{H^{1}(\Omega)} < \infty$.

We can choose a weakly convergent subsequence $\{u_n\}_n$ such that $\tilde{u}_n \xrightarrow{w} u$ in $H^1(\Omega)$, where $u_n = u^{\epsilon_n}$. It suffices to show

(5)
$$\int_{a} \nabla u \cdot \nabla \zeta dx + \langle \bar{\eta}, u\zeta \rangle + \alpha \int_{r} u\zeta d\sigma = \int_{a} f\zeta dx$$

for all $\zeta \in C^{\infty}(\overline{\Omega})$, where \langle , \rangle denotes the dual pair between $W^{1,1}(\Omega)^*$ and $W^{1,1}(\Omega)$. We can substitute $v = \theta_n \zeta$ into (3), where $\theta_n = \theta^{\varepsilon_n}$. We set $R_n = R^{\varepsilon_n}$ and $F_n = F^{\varepsilon_n}$. Thus

(6)
$$\int_{R_n} \theta_n \nabla u_n \cdot \nabla \zeta dx + \int_{R_n} \zeta \nabla u_n \cdot \nabla \theta_n dx + \alpha \int_{\partial F_n} \zeta u_n \theta_n d\sigma + \alpha \int_{\Gamma} u_n \zeta d\sigma$$
$$= \int_{R_n} f \theta_n \zeta dx.$$

No. 2]

Here we have used the equality $u_n = u_n \theta_n$ a.e. on Γ . By the definition of u_n and the conditions (a.2)-(ii), (a.4)-(ii) and (a.4)-(iii) we have $\nabla \tilde{u}_n \xrightarrow{w} \nabla u$, $\tilde{\theta}_n \nabla \zeta \xrightarrow{s} \nabla \zeta$ in $L^2(\Omega)^N$, $\tilde{\theta}_n - \theta_n \xrightarrow{s} 0$ in $L^2(\Omega)$ and $\tilde{\theta}_n \xrightarrow{s} 1$ in $L^2(\Omega)$, $\tilde{u}_n \longrightarrow u$ in $L^2(\Gamma)$. Thus,

$$\int_{R_n} \theta_n (\nabla u_n \cdot \nabla \zeta - f\zeta) \, dx + \alpha \int_{\Gamma} u_n \zeta d\sigma$$

$$= \int_{\Omega} \tilde{\theta}_n (\nabla \tilde{u}_n \cdot \nabla \zeta - f\zeta) \, dx + \alpha \int_{\Gamma} \tilde{u}_n \zeta d\sigma + \int_{\Omega} (\theta_n - \tilde{\theta}_n) [\nabla \tilde{u}_n \cdot \nabla \zeta - f\zeta] \, dx$$

$$\longrightarrow \int_{\Omega} (\nabla u \cdot \nabla \zeta - f\zeta) \, d\sigma + \alpha \int_{\Gamma} u\zeta d\sigma.$$

Notice $\lambda_n \zeta \nabla u_n = \lambda_n [\nabla (\zeta \tilde{u}_n) - \tilde{u}_n \nabla \zeta]$, where $\lambda_n = \lambda^{\varepsilon_n}$. Therefore,

$$\begin{split} \int_{R_n} \zeta \nabla u_n \cdot \nabla \theta_n dx &+ \alpha \int_{\partial F_n} u_n \theta_n \zeta d\sigma \\ &= \langle -\nabla \cdot (\chi_n \nabla \tilde{\theta}_n) + \alpha \theta_n \delta(\partial F_n), \ \tilde{u}_n \zeta \rangle - \int_{R_n} u_n \nabla \theta_n \cdot \nabla \zeta dx. \end{split}$$

Using (a.2)-(ii) and (a.4)-(ii) we have $u_n \nabla \zeta \xrightarrow{s} u \nabla \zeta$, $(u_n - \tilde{u}_n) \nabla \zeta \xrightarrow{s} 0$ in $L^2(\Omega)^N, \nabla \tilde{\theta}_n \xrightarrow{w} 0$ in $L^2(\Omega)^N$. Clearly, $\zeta \tilde{u}_n \xrightarrow{w} \zeta u$ in $W^{1,1}(\Omega)$. Also, using (a.4)-(iv) we get

$$\begin{split} \int_{R_n} u_n \nabla \theta_n \cdot \nabla \zeta dx = & \int_{\mathcal{Q}} \tilde{u}_n \nabla \tilde{\theta}_n \cdot \nabla \zeta dx + \int_{\mathcal{Q}} (u_n - \tilde{u}_n) \nabla \tilde{\theta}_n \cdot \nabla \zeta dx \longrightarrow 0, \\ & \int_{R_n} \zeta \nabla u_n \cdot \nabla \theta_n dx + \alpha \int_{\partial F_n} u_n \theta_n \zeta d\sigma \longrightarrow \langle \overline{\eta}, u\zeta \rangle. \end{split}$$

Therefore we get (5). The proof is completed.

3. Proof of Theorem 1. We introduce special functions θ^{ϵ} such that $\theta^{\epsilon} = 1$ on $\Omega \setminus \bigcup \{B_i(\epsilon) : 1 \leq i \leq n^{\epsilon}\}, \ \Delta \theta^{\epsilon} = 0$ on $\bigcup \{B_i(\epsilon) \setminus B_i(r^{\epsilon}) : 1 \leq i \leq n^{\epsilon}\}$ and $\partial \theta^{\epsilon} / \partial \nu^{\epsilon} + \alpha \theta^{\epsilon} = 0$ on $\partial F^{\epsilon} (\subset \partial R^{\epsilon})$. By a similar way to that in [1] we can see functions θ^{ϵ} satisfies (a.4) with $\bar{\eta} = \alpha S_{N} \eta / |\Omega|$. We show (a.3). We set E_{i} $=C_i^{\varepsilon} \cap R^{\varepsilon}, 1 \leq i \leq n^{\varepsilon}$. Choose ε so small that

$$2\int_{r^{\epsilon}}^{N^{1/2\epsilon}}r^{N-1}dr\max\left\{\int_{r^{\epsilon}}^{N^{1/2\epsilon}}\rho^{1-N}d\rho,\ (r^{\epsilon})^{1-N}\right\}\leq \frac{3}{\eta}\left(\frac{N}{2}\right)^{N}|\varOmega|.$$

Here we use $n^{\varepsilon} \sim |\Omega|/(2\varepsilon)^N$, $\varepsilon \to 0$. For the equality,

$$|v(r,\omega)|^2 = \left[\int_{r^*}^r \frac{\partial v}{\partial
ho} d
ho + v(r^*,\omega)
ight]^2, \quad v \in H^1(R^*), \quad \omega \in \partial B_i(1),$$

using the Schwarz inequalities twice on the left hand side, multiplying both sides by r^{N-1} , integrating them over $(r^{\epsilon}, \rho_i(\omega)), \rho_i(\omega) = \sup \{r \ge 0:$ $r\omega \in E_i$, next, over the unit sphere $\partial B_i(1)$, we get the inequality

$$\int_{E_i} |v|^2 dx \leq 3 \left(\frac{N}{2}\right)^N \frac{|\Omega|}{\eta} \left[\int_{E_i} |\nabla v|^2 dx + \int_{\partial B_i(r^*)} |v|^2 d\sigma \right]$$

We denote by G_i a non-empty set $C_i^{\epsilon} \cap R^{\epsilon}$, $i > n^{\epsilon}$. For sufficiently small ϵ we have a Lipschitz function h_i such that $G_i = \{(x', x_N) : |x_i| \leq \varepsilon, 1 \leq i \leq N-1, \}$ $0 \le x_N \le h_i(x')$ and $C_i^{\varepsilon} \cap \Gamma = \{(x', h_i(x') : |x_i| \le \varepsilon, 1 \le i \le N-1\}, x' = (x_1, \cdots, x_i) \le 0 \le N-1\}$ x_{N-1}). Similarly, for the same v as the above we have a constant C_1 independent of ε such that

S. KAIZU

$$\int_{G_i} |v|^2 dx \leq C_1 \varepsilon \Big(\int_{G_i} |\nabla v|^2 dx + \int_{C_i^\varepsilon \cap \Gamma} |v|^2 d\sigma \Big)$$

By these inequalities we can see (a.3). The family of extensions: $H^{i}(R^{\epsilon}) \rightarrow H^{i}(\Omega)$ in Theorem 1 is uniformly bounded with respect to their operator norm (cf. [3]). So (a.2)-(i) holds. The condition (a.1) also holds. Lastly, (a.2)-(ii) follows from the fact such that the linear operator: $L^{2}(\partial B_{i}(r^{\epsilon})) \ni v$ $\rightarrow v_{r} \in L^{2}(\partial B_{i}(r^{\epsilon}))$ is bounded with norm one for 0 < r < 1. Here $v_{r}(r^{\epsilon}, \omega) = \tilde{v}(x_{i}^{\epsilon} + rr^{\epsilon}\omega)$, where x_{i}^{ϵ} denotes the center of $B_{i}(r^{\epsilon})$. The conditions of Theorem 2 are all verified. q.e.d.

References

- D. Cioranescu and F. Murat: Un terme étrange venu d'ailleurs I, II. Nonlinear partial differential equations and their applications. Vol. II-III, Pitman, Boston, London, Melbourne (1982).
- [2] M. Kac: Probabilistic methods in some problems of scattering theory. Rocky Mountain J. of Math., 4, 511-538 (1974).
- [3] J. Rauch and M. Taylor: Potential and scattering theory on wildly perturbed domains. J. Funct. Anal., 18, 27-59 (1975).