11. The Robin Problems on Domains with Many Tiny Holes

By Satoshi Kaizu
Department of Information Mathematics, University of Electro-Communications

(Communicated by Kôsaku Yosida, M. J. A., Feb. 12, 1985)

1. Introduction. Let Ω be a bounded domain of $R^{N}, N \geqq 2$, with smooth boundary Γ and with the outer unit normal vector ν_{Γ} on Γ. Let \boldsymbol{R}^{N} be divided into an infinitely many number of cubes $C_{i}^{\varepsilon}, i \in N$, with volume of $(2 \varepsilon)^{N}$ and let $B_{i}\left(r^{\varepsilon}\right)$ be a closed ball of radius $r^{\varepsilon}(<\varepsilon)$ centered in C_{i}^{ε}. From Ω we remove all such balls and obtain a $D^{\varepsilon}(\subset \Omega)$ with n^{ε} holes. Under the case $n^{s} \rightarrow \infty, r^{\varepsilon} \rightarrow 0$, a parameter, which determines the behavior of the Laplacian on D^{s} with the Dirichlet condition, is known by M. Kac [2], J. Rauch and M. Taylor [3], D. Cioranescu and F. Murat [1]. That parameter is given by $\lim n^{\varepsilon}\left(r^{s}\right)^{N-2}$ for $N \geqq 3$ and $\lim n^{\varepsilon} /\left|\log r^{s}\right|$ for $N=2$, ε means values of a fixed sequence decreasing to zero. Now, we show a different parameter is important for the Robin problems.

From Ω we remove all balls $B_{i}\left(r^{\varepsilon}\right)$ such that dist $\left(B_{i}\left(r^{\varepsilon}\right), \Gamma\right) \geqq \varepsilon$ and obtain R^{ε} with n^{ε} holes. Let α be a positive constant and ν^{ε} the outer unit normal vector on ∂R^{ε}. We consider the Robin problem : for $f \in L^{2}(\Omega)$ find $u^{\varepsilon} \in H^{1}\left(R^{\varepsilon}\right)$ such that

$$
\begin{align*}
& -\Delta u^{\varepsilon}=f \quad \text { a.e. in } R^{\varepsilon} \\
& \frac{\partial u^{\varepsilon}}{\partial \nu^{\varepsilon}}+\alpha u^{\varepsilon}=0 \quad \text { a.e. on } \partial R^{\varepsilon} . \tag{1}
\end{align*}
$$

Theorem 1. Let u^{ε} be the solution of (1) and $\tilde{u}^{\varepsilon} \in H^{1}(\Omega)$ an extension of u^{ε} to be harmonic in $F^{\varepsilon}, F^{\varepsilon}=\Omega \backslash R^{\varepsilon}$. Assume that $r^{\varepsilon} \rightarrow 0$ and $n^{\varepsilon} \rightarrow \infty$ with the conditions $\eta=\lim n^{\varepsilon}\left(r^{\varepsilon}\right)^{N-1}, 0<\eta<\infty$. Then \tilde{u}^{ε} converges weakly in $H^{1}(\Omega)$ to the solution of the problem:

$$
\begin{align*}
& -\Delta u+\frac{\alpha S_{N} \eta u}{|\Omega|}=f \quad \text { a.e. in } \Omega, \tag{2}\\
& \frac{\partial u}{\partial \nu_{\Gamma}}+\alpha u=0 \quad \text { a.e. on } \Gamma .
\end{align*}
$$

Here $|\Omega|$ means the volume of Ω and S_{N} means the surface area of the unit sphere of \boldsymbol{R}^{N}.
2. Abstract scheme. Let Ω be the same domain as in Section 1. We introduce a certain limit of the minus Laplacian, which corresponds to one of versions for theorem 1.2 of Cioranescu-Murat [1] in the case of Robin condition.

For a subdomain G of Ω we regard all functions of $L^{2}(G)$ as functions of $L^{2}(\Omega)$ vanishing outside G. In this section R^{ε} means a subdomain of Ω satisfying (a.1) below. Let $a^{\varepsilon}: H^{1}\left(R^{\varepsilon}\right) \times H^{1}\left(R^{\varepsilon}\right) \rightarrow \boldsymbol{R}$ be a bilinear form defined by

$$
a^{\varepsilon}(v, w)=\int_{R^{\varepsilon}} \nabla v \cdot \nabla w d x+\alpha \int_{\partial R^{\varepsilon}} v w d \sigma
$$

Let us consider (1). For (1) we have

$$
\begin{equation*}
a^{\varepsilon}\left(u^{\varepsilon}, v\right)=\int_{R^{\varepsilon}} f v d x \quad \text { for all } v \in H^{1}\left(R^{\varepsilon}\right) \tag{3}
\end{equation*}
$$

We consider the behavior of the solution of (3). We use the norm of $H^{1}\left(R^{s}\right)$ defined by $\|v\|_{H^{1\left(R^{e}\right)}}^{2}=\|\nabla v\|_{L^{2}\left(R^{e}\right)^{N}}^{2}+\|v\|_{L^{2}\left(R^{t}\right)}^{2}$.

We set $F^{\varepsilon}=\Omega \backslash R^{\varepsilon}$. We assume the following conditions.
(a.1) $\quad F^{\varepsilon}$ does not meet Γ and its interior kernel is a nonempty set with locally Lipschitz boundary.
(a.2) There exists a family of extension maps $T^{\varepsilon}: H^{1}\left(R^{\varepsilon}\right) \rightarrow H^{1}(\Omega)$ such that
(i) limsup $\left\|T^{s}\right\|_{L_{\left(H^{1}\left(R^{s}\right), H^{1}(\Omega)\right)}}<\infty$,
(ii) if $\limsup a^{\varepsilon}\left(v^{\varepsilon}, v^{\varepsilon}\right)<\infty$ then $T^{\varepsilon} v^{\varepsilon}-v^{\varepsilon} \rightarrow 0$ in $L^{2}(\Omega)$.
(a.3) There exists a constant c_{1} such that

$$
a^{\varepsilon}(v, v) \geqq c_{1}\|v\|_{H^{2}\left(R^{e}\right)}^{2} \text { for all } v \in H^{1}\left(R^{\varepsilon}\right) \text { and } \varepsilon>0 .
$$

(a.4) There exists a family $\left\{\theta^{\epsilon} \in W^{1, \infty}\left(R^{\varepsilon}\right)\right\}_{s}$ satisfying the conditions below.
(i) $\theta^{\varepsilon}=1$ a.e. on Γ.
(ii) Set $\tilde{\theta}^{s}=T^{s} \theta^{\varepsilon}$. Then $\tilde{\theta}^{c} \xrightarrow{w} 1$ in $H^{1}(\Omega)$ as $\varepsilon \rightarrow 0$.
(iii) $\limsup a^{\varepsilon}\left(\theta^{\varepsilon}, \theta^{\varepsilon}\right)<\infty$.
(iv) There exists $\bar{\eta} \in W^{1,1}(\Omega)^{*}$ such that

$$
-\nabla \cdot\left(\chi^{\varepsilon} \nabla \theta^{s}\right)+\alpha \theta^{\delta} \delta\left(\partial F^{\varepsilon}\right) \xrightarrow{s} \bar{\eta} \quad \text { in } W^{1,1}(\Omega)^{*},
$$

$W^{1,1}(\Omega)^{*}$ means the dual space of $W^{1,1}(\Omega), \chi^{\varepsilon}$ means the characteristic function of R^{ε} and $\delta\left(\partial F^{\varepsilon}\right)$ means the measure defined by

$$
\left\langle\delta\left(\partial F^{s}\right), v\right\rangle=\int_{\partial F s} v d \sigma \quad \text { for all } v \in W^{1,1}(\Omega)
$$

Theorem 2, Let u^{ε} be the solution of (3) and set $\tilde{u}^{\varepsilon}=T^{s} u^{\varepsilon}$. Under all the conditions from (a.1) to (a.4), \tilde{u}^{ε} converges weakly in $H^{1}(\Omega)$ to u, where u is the solution of

$$
\begin{array}{ll}
-\Delta u+\bar{\eta} u=f & \text { a.e. in } \Omega, \\
\frac{\partial u}{\partial \nu_{\Gamma}}+\alpha u=0 & \text { a.e. on } \Gamma . \tag{4}
\end{array}
$$

Proof. Substituting $v=u^{\varepsilon}$ into (3) and using (a.2) and (a.3) we can see limsup $\left\|\tilde{u}^{\varepsilon}\right\|_{H^{1(\Omega)}}<\infty$.
We can choose a weakly convergent subsequence $\left\{u_{n}\right\}_{n}$ such that $\tilde{u}_{n} \xrightarrow{w} u$ in $H^{1}(\Omega)$, where $u_{n}=u^{\varepsilon_{n}}$. It suffices to show

$$
\begin{equation*}
\int_{\Omega} \nabla u \cdot \nabla \zeta d x+\langle\bar{\eta}, u \zeta\rangle+\alpha \int_{\Gamma} u \zeta d \sigma=\int_{\Omega} f \zeta d x \tag{5}
\end{equation*}
$$

for all $\zeta \in C^{\infty}(\bar{\Omega})$, where \langle,$\rangle denotes the dual pair between W^{1,1}(\Omega)^{*}$ and $W^{1,1}(\Omega)$. We can substitute $v=\theta_{n} \zeta$ into (3), where $\theta_{n}=\theta^{\varepsilon_{n}}$. We set $R_{n}=R^{\varepsilon_{n}}$ and $F_{n}=F^{\varepsilon_{n}}$. Thus

$$
\begin{align*}
& \int_{R_{n}} \theta_{n} \nabla u_{n} \cdot \nabla \zeta d x+\int_{R_{n}} \zeta \nabla u_{n} \cdot \nabla \theta_{n} d x+\alpha \int_{\partial F_{n}} \zeta u_{n} \theta_{n} d \sigma+\alpha \int_{\Gamma} u_{n} \zeta d \sigma \tag{6}\\
&=\int_{R_{n}} f \theta_{n} \zeta d x .
\end{align*}
$$

Here we have used the equality $u_{n}=u_{n} \theta_{n}$ a.e. on Γ. By the definition of u_{n} and the conditions (a.2)-(ii), (a.4)-(ii) and (a.4)-(iii) we have $\nabla \tilde{u}_{n} \xrightarrow{w} \nabla u$, $\tilde{\theta}_{n} \nabla \zeta \xrightarrow{s} \nabla \zeta$ in $L^{2}(\Omega)^{N}, \tilde{\theta}_{n}-\theta_{n} \xrightarrow{s} 0$ in $L^{2}(\Omega)$ and $\tilde{\theta}_{n} \xrightarrow{s} 1$ in $L^{2}(\Omega), \tilde{u}_{n} \longrightarrow u$ in $L^{2}(\Gamma)$. Thus,

$$
\begin{aligned}
\int_{R_{n}} & \theta_{n}\left(\nabla u_{n} \cdot \nabla \zeta-f \zeta\right) d x+\alpha \int_{\Gamma} u_{n} \zeta d \sigma \\
& =\int_{\Omega} \tilde{\theta}_{n}\left(\nabla \tilde{u}_{n} \cdot \nabla \zeta-f \zeta\right) d x+\alpha \int_{\Gamma} \tilde{u}_{n} \zeta d \sigma+\int_{\Omega}\left(\theta_{n}-\tilde{\theta}_{n}\right)\left[\nabla \tilde{u}_{n} \cdot \nabla \zeta-f \zeta\right] d x \\
& \quad \longrightarrow \int_{\Omega}(\nabla u \cdot \nabla \zeta-f \zeta) d \sigma+\alpha \int_{\Gamma} u \zeta d \sigma .
\end{aligned}
$$

Notice $\chi_{n} \zeta \nabla u_{n}=\chi_{n}\left[\nabla\left(\zeta \tilde{u}_{n}\right)-\tilde{u}_{n} \nabla \zeta\right]$, where $\chi_{n}=\chi^{\varepsilon_{n}}$. Therefore,

$$
\begin{aligned}
\int_{R_{n}} & \zeta \nabla u_{n} \cdot \nabla \theta_{n} d x+\alpha \int_{\partial F_{n}} u_{n} \theta_{n} \zeta d \sigma \\
& =\left\langle-\nabla \cdot\left(\chi_{n} \nabla \tilde{\theta}_{n}\right)+\alpha \theta_{n} \delta\left(\partial F_{n}\right), \tilde{u}_{n} \zeta\right\rangle-\int_{R_{n}} u_{n} \nabla \theta_{n} \cdot \nabla \zeta d x .
\end{aligned}
$$

Using (a.2)-(ii) and (a.4)-(ii) we have $u_{n} \nabla \zeta \xrightarrow{s} u \nabla \zeta,\left(u_{n}-\tilde{u}_{n}\right) \nabla \zeta \xrightarrow{s} 0$ in $L^{2}(\Omega)^{N}, \nabla \tilde{\theta}_{n} \xrightarrow{w} 0$ in $L^{2}(\Omega)^{N}$. Clearly, $\zeta \tilde{u}_{n} \xrightarrow{w} \zeta u$ in $W^{1,1}(\Omega)$. Also, using (a.4)-(iv) we get

$$
\begin{gathered}
\int_{R_{n}} u_{n} \nabla \theta_{n} \cdot \nabla \zeta d x=\int_{\Omega} \tilde{u}_{n} \nabla \tilde{\theta}_{n} \cdot \nabla \zeta d x+\int_{\Omega}\left(u_{n}-\tilde{u}_{n}\right) \nabla \tilde{\theta}_{n} \cdot \nabla \zeta d x \longrightarrow 0 \\
\int_{R_{n}} \zeta \nabla u_{n} \cdot \nabla \theta_{n} d x+\alpha \int_{\partial F_{n}} u_{n} \theta_{n} \zeta d \sigma \longrightarrow\langle\bar{\eta}, u \zeta\rangle
\end{gathered}
$$

Therefore we get (5). The proof is completed.
q.e.d.
3. Proof of Theorem 1. We introduce special functions θ^{ε} such that $\theta^{\varepsilon}=1$ on $\Omega \backslash \cup\left\{B_{i}(\varepsilon): 1 \leqq i \leqq n^{\varepsilon}\right\}, \Delta \theta^{\varepsilon}=0$ on $\cup\left\{B_{i}(\varepsilon) \backslash B_{i}\left(r^{\varepsilon}\right): 1 \leqq i \leqq n^{\varepsilon}\right\}$ and $\partial \theta^{\varepsilon} / \partial \nu^{\varepsilon}+\alpha \theta^{\varepsilon}=0$ on $\partial F^{\varepsilon}\left(\subset \partial R^{\varepsilon}\right)$. By a similar way to that in [1] we can see functions θ^{ε} satisfies (a.4) with $\bar{\eta}=\alpha S_{N} \eta /|\Omega|$. We show (a.3). We set E_{i} $=C_{i}^{\varepsilon} \cap R^{\varepsilon}, 1 \leqq i \leqq n^{\varepsilon}$. Choose ε so small that

$$
2 \int_{r^{\varepsilon}}^{N_{1} / 2_{\varepsilon}} r^{N-1} d r \max \left\{\int_{r^{\varepsilon}}^{N_{1} / \varepsilon_{\varepsilon}} \rho^{1-N} d \rho,\left(r^{\varepsilon}\right)^{1-N}\right\} \leqq \frac{3}{\eta}\left(\frac{N}{2}\right)^{N}|\Omega| .
$$

Here we use $n^{\varepsilon} \sim|\Omega| /(2 \varepsilon)^{N}, \varepsilon \rightarrow 0$. For the equality,

$$
|v(r, \omega)|^{2}=\left[\int_{r^{\varepsilon}}^{r} \frac{\partial v}{\partial \rho} d \rho+v\left(r^{\varepsilon}, \omega\right)\right]^{2}, \quad v \in H^{1}\left(R^{\varepsilon}\right), \quad \omega \in \partial B_{i}(1)
$$

using the Schwarz inequalities twice on the left hand side, multiplying both sides by r^{N-1}, integrating them over $\left(r^{\varepsilon}, \rho_{i}(\omega)\right), \rho_{i}(\omega)=\sup \{r \geqq 0$: $r \omega \in E_{i}$, next, over the unit sphere $\partial B_{i}(1)$, we get the inequality

$$
\int_{E_{i}}|v|^{2} d x \leqq 3\left(\frac{N}{2}\right)^{N} \frac{|\Omega|}{\eta}\left[\int_{E_{i}}|\nabla v|^{2} d x+\int_{\partial B_{i}(r v)}|v|^{2} d \sigma\right] .
$$

We denote by G_{i} a non-empty set $C_{i}^{\varepsilon} \cap R^{\varepsilon}, i>n^{\varepsilon}$. For sufficiently small ε we have a Lipschitz function h_{i} such that $G_{i}=\left\{\left(x^{\prime}, x_{N}\right):\left|x_{i}\right| \leqq \varepsilon, 1 \leqq i \leqq N-1\right.$, $\left.0 \leqq x_{N} \leqq h_{i}\left(x^{\prime}\right)\right\}$ and $C_{i}^{\varepsilon} \cap \Gamma=\left\{\left(x^{\prime}, h_{i}\left(x^{\prime}\right):\left|x_{i}\right| \leqq \varepsilon, 1 \leqq i \leqq N-1\right\}, x^{\prime}=\left(x_{1}, \cdots\right.\right.$, $\left.x_{N-1}\right)$. Similarly, for the same v as the above we have a constant C_{1} independent of ε such that

$$
\int_{G_{i}}|v|^{2} d x \leqq C_{1} \varepsilon\left(\int_{G_{i}}|\nabla v|^{2} d x+\int_{C_{i} \cap \Gamma}|v|^{2} d \sigma\right)
$$

By these inequalities we can see (a.3). The family of extensions: $H^{1}\left(R^{s}\right)$ $\rightarrow H^{1}(\Omega)$ in Theorem 1 is uniformly bounded with respect to their operator norm (cf. [3]). So (a.2)-(i) holds. The condition (a.1) also holds. Lastly, (a.2)-(ii) follows from the fact such that the linear operator: $L^{2}\left(\partial B_{i}\left(r^{\varepsilon}\right)\right) \ni v$ $\rightarrow v_{r} \in L^{2}\left(\partial B_{i}\left(r^{\varepsilon}\right)\right.$) is bounded with norm one for $0<r<1$. Here $v_{r}\left(r^{\varepsilon}, \omega\right)$ $=\tilde{v}\left(x_{i}^{\varepsilon}+r r^{\varepsilon} \omega\right)$, where x_{i}^{ε} denotes the center of $B_{i}\left(r^{\varepsilon}\right)$. The conditions of Theorem 2 are all verified.
q.e.d.

References

[1] D. Cioranescu and F. Murat: Un terme étrange venu d'ailleurs I, II. Nonlinear partial differential equations and their applications. Vol. II-III, Pitman, Boston, London, Melbourne (1982).
[2] M. Kac: Probabilistic methods in some problems of scattering theory. Rocky Mountain J. of Math., 4, 511-538 (1974).
[3] J. Rauch and M. Taylor: Potential and scattering theory on wildly perturbed domains. J. Funct. Anal., 18, 27-59 (1975).

