35

10. Commutators on Dyadic Martingales

By J.-A. CHAO*) and H. OMBE**)

(Communicated by Kôsaku Yosida, M. J. A., Feb. 12, 1985)

§1. Introduction. A characterization of $BMO(\mathbb{R}^n)$ by commutators with singular integrals was given by Coifman-Rochberg-Weiss [7]. (See also [8].) Later, an analogue for regular martingales is shown by Janson [9]. Recently, Chanillo [3] and Rochberg-Weiss [11] and Komori [10] obtained a similar result on commutators with fractional integrals. It is the purpose of this note to study fractional integrals and commutators in the dyadic martingale setting. A version of fractional integrals I^a for dyadic martingales is introduced which is parallel to that on Walsh-Fourier series studied by Watari [14], and that on local fields by Taibleson [13]. The boundedness of commutators $[b, I^a]$ shall be used to characterize the multiplicating function b.

§2. Fractional integrals. Let \mathcal{F}_n be the sub- σ - field generated by dyadic intervals of length 2^{-n} in [0, 1], $n=0, 1, 2, \cdots$. A martingale $\{f_n\}_{n\geq 0}$ relative to $\{\mathcal{F}_n\}_{n\geq 0}$ is a dyadic martingale. For an integrable function f on [0, 1), the conditional expectations $f_n \equiv E(f | \mathcal{F}_n)$, $n=0, 1, 2, \cdots$, form a dyadic martingale whose L^p norm, $\sup_n ||f_n||_p$, equals to the L^p norm of the function f, for $p\geq 1$. We shall identify f with $\{f_n\}$ by writing $f=\{f_n\}$ and assume $f_0=0$. Let $\{d_n\}$ be the difference sequence of $f=\{f_n\}$, i.e. $f_n=\sum_{k=1}^n d_k$. The maximal function and square function of $f=\{f_n\}$ are given by $f^*=\sup|f_n|$ and $S(f)=(\sum_{k=1}^\infty d_k^2)^{1/2}$, respectively. The following are well-known. (See [1], [2] and [5].)

(1)
$$\begin{aligned} \|f^*\|_p \approx \|f\|_p \approx \|S(f)\|_p, & \text{for } 1$$

Now for a dyadic martingale $f = \{f_n\}$ and $\alpha \in \mathbf{R}$, we define the fractional integral $I^{\alpha}f = \{(I^{\alpha}f)_n\}$ of f (of order α) by $(I^{\alpha}f)_n = \sum_{k=1}^n 2^{-k\alpha}d_k$, whose maximal function is $(I^{\alpha}f)^* = \sup_n |\sum_{k=1}^n 2^{-k\alpha}d_k|$. If $\alpha > 0$, $I^{\alpha}f$ is simply a martingale transform introduced by Burkholder [1]. It is trivial that $||(I^{\alpha}f)^*||_p \leq C ||I^{\alpha}f||_p \leq C ||f||_p$ for $0 < \alpha < \infty$ and 1 . Moreover, we have

Theorem 1. For integrable f, (2) $\|(I^{\alpha}f)^{*}\|_{q} \leq C \|f\|_{p}$ where 1 $and <math>\alpha = 1/p - 1/q$;

^{*&#}x27; Department of Mathematics, Cleveland State University, Cleveland, OH 44115. Partly supported by grants from the National Science Foundation and Cleveland State University. 1980 mathematics subject classification; 60G46; 42A45; 60G42.

^{**&#}x27; Department of Mathematical Sciences, University of Texas at El Paso, El Paso, TX 79968.

J.-A. CHAO and H. OMBE

(3)
$$P[(I^{\alpha}f)^* > \lambda] \leq C \left(\frac{\|f\|_1}{\lambda}\right)^{1/(1-\alpha)} \quad for \ all \ \lambda > 0.$$

Note that Watari [14] proved these results for $|I^{\alpha}f|$ in the place of $(I^{\alpha}f)^{*}$ by using some orthogonal properties of the Walsh-Fourier series. (2) follows from his version and (1). (3) (as well as (2)) can be obtained by a Calderón-Zygmund type of decomposition argument (or a stopping time) for regular martingales similar to the one used in [4] and [6]. Another proof of (2) is by applying (1) to certain norm estimates of d_{k} .

§3. Commutators and BMO. Martingales of bounded mean oscillation (BMO) are those martingales $b = \{b_n\}$ such that

$$\sup \|E(|b-b_n||\mathcal{F}_n)\|_{\infty} \equiv \|b\|_{\ast} < \infty.$$

This is equivalent, for dyadic martingales, to that $\sup_n ||E(|b-b_{n-1}||\mathcal{F}_n)||_{\infty} < \infty$. The John-Nirenberg inequality gives other equivalent norms:

 $\|b\|_* \approx \sup \|[E(|b-b_n|^s |\mathcal{F}_n)]^{1/s}\|_{\infty} \quad \text{for each } 1 \leq s < \infty.$

The sharp function of b is given by $b^* = \sup_n E(|b-b_n||\mathcal{F}_n)$. We note that $\|b^*\|_{\infty} = \|b\|_*$ and $\|b^*\|_p \approx \|b\|_p$, 1 .

For an integrable function b, we define the commutator with I^{α} by $[b, I^{\alpha}]f = bI^{\alpha}f - I^{\alpha}(bf)$.

Our main result generalizing the one in Euclidean spaces by Chanillo [3], Rochberg-Weiss [11] and Komori [10] is the following

Theorem 2. Let $1 and <math>\alpha = 1/p - 1/q > 0$. Then b is in BMO if and only if the commutator $[b, I^{\alpha}]$ is bounded from L^{p} to L^{q} , i.e., $[b, I^{\alpha}] \in B(L^{p}, L^{q})$.

We need a preliminary result on $f_{\alpha}^* \equiv \sup_n 2^{-n\alpha} |f_n|$ where $f = \{f_n\}$ is a dyadic martingale.

Lemma. Let $1 and <math>\alpha = 1/p - 1/q$. Then $||f_{\alpha}^*||_q \le C ||f||_p$.

The lemma follows from a decomposition (or a stopping time) argument as mentioned before. See also [12] or [3].

Proof of Theorem 2. Suppose $b \in BMO$. Given a dyadic interval J in \mathcal{F}_n with length 2^{-n} , let b_J be the average value of b on J. Write

$$g \equiv [b, I^{\alpha}] f = (b - b_J) I^{\alpha} f - I^{\alpha} ((b - b_J) f \chi_J) - I^{\alpha} ((b - b_J) f \chi_{Jc})$$

= $q^{(1)} + q^{(2)} + q^{(3)}$, say,

Now, we choose a t such that $1 \le t \le q$ and 1/s + 1/t = 1, then we have $E(|g^{(1)}||\mathcal{F}_n)(x) = E(|(b-b_J)I^{\alpha}f||\mathcal{F}_n)(x)$

$$\leq [E(|b-b_{J}|^{s}|\mathcal{F}_{n})(x)]^{1/s}[E(|I^{\alpha}f|^{t}|\mathcal{F}_{n})(x)]^{1/t} \\ \leq C_{1} ||b||_{*} [(|I^{\alpha}f|^{t})^{*}(x)]^{1/t}.$$

To estimate $g^{(2)}$, we first choose p_1 and v such that $1 < p_1 < v < p$ and suppose $\alpha = 1/p_1 - 1/q_1$, $1/u + 1/v = 1/p_1$. We have $1 < p_1 < q_1 < \infty$ and 1 < u, $v < \infty$. Then it follows from Theorem 1 that

 $E(|g^{(2)}||\mathcal{F}_{n})(x) \leq [E(|I^{\alpha}((b-b_{J})f\chi_{J})|^{q_{1}}|\mathcal{F}_{n})(x)]^{1/q_{1}} \\ \leq C_{2}2^{-n\alpha}[E(|(b-b_{J})f|^{p_{1}}|\mathcal{F}_{n})(x)]^{1/p_{1}} \\ \leq C_{2}2^{-n\alpha}[E(|b-b_{J}|^{u}|\mathcal{F}_{n}(x)]^{1/u}[E(|f|^{v}|\mathcal{F}_{n})(x)]^{1/v} \\ \leq C_{3}||b||_{*}[(|f|^{v})_{*v}^{*}(x)]^{1/v}.$

No. 2]

Note that $g^{(3)}$ is constant on J. Hence we have $g^{*}(x) \leq C \|b\|_{*} \{ [(|I^{\alpha}f|^{t})^{*}(x)]^{1/t} + [(|f|^{v})^{*}_{av}(x)]^{1/v} \}.$ Therefore, by Theorem 1 and Lemma, we obtain $\|[b, I^{\alpha}]f\|_{q} = \|g\|_{q} \leq C \|b\|_{*} \|f\|_{v}.$

Conversely, consider a dyadic interval $J \in \mathcal{F}_n$ with length 2^{-n} . Let J_1 be its adjacent dyadic interval of the same size, i.e. $J \cup J_1 \in \mathcal{F}_{n-1}$. An easy computation shows that for $x \in J$,

$$\begin{split} & [b, I^{a}]\chi_{J_{1}}(x) = (b(x) - b_{J_{1}})2^{-n\alpha}(2^{\alpha} - 1 - 2^{-n(1-\alpha)})(2 - 2^{\alpha})^{-1}.\\ & \text{Hence if } n > N(\alpha) \equiv (\alpha - 1)^{-1} \log_{2}(2^{\alpha} - 1), \text{ then} \\ & |[b, I^{a}]\chi_{J_{1}}(x)| \ge C(\alpha)2^{-n\alpha} |b(x) - b_{J_{1}}|,\\ & \text{for some } C(\alpha) > 0. \quad \text{Thus for } x \in J \in \mathcal{F}_{n} \text{ with } n > N(\alpha),\\ & [E(|b - b_{J_{1}}|^{q} |\mathcal{F}_{n})(x)]^{1/q} \le C2^{n\alpha} [E(|[b, I^{\alpha}]\chi_{J_{1}}|^{q} |\mathcal{F}_{n})(x)]^{1/q} \\ & \le C2^{n\alpha}2^{n/q} ||[b, I^{\alpha}]\chi_{J_{1}}||_{q} \\ & \le C_{1}2^{n\alpha}2^{n/q} ||\chi_{J_{1}}||_{p} = C_{1} \end{split}$$

where $C_1 = \|[b, I^{\alpha}]\|/C(\alpha)$. This implies that $b \in BMO$.

Therefore the proof of Theorem 2 completed.

§4. Hardy and Lipschitz spaces. H^p martingales, 0 , are those martingales <math>f whose maximal function f^* is in L^p . For $\lambda \in \mathbf{R}$, a dyadic martingale $f = \{f_n\}$ is said to be in Lip λ if

 $||f||_{(\lambda)} = \sup 2^{n\lambda} ||E(|f-f_n|| \mathcal{D}_n)||_{\infty} < \infty.$

Note that Lip 0=BMO and for $0 , the dual of <math>H^p$ is Lip (1/p-1).

The results in the previous sections about fractional integrals and commutators on L^{p} and *BMO* can be extended to H^{p} and Lipschitz spaces also. We shall state some generalizations and omit the proofs.

Theorem 3.

(i)	$I^{lpha}\in {oldsymbol B}(H^{p},H^{q})$,	$0 and \alpha = 1/p - 1/q.$	
(ii)	$I^{\alpha} \in \boldsymbol{B}(\operatorname{Lip} \lambda, \operatorname{Lip} (\alpha + \lambda)),$	$0{<}\alpha$, $\lambda{<}\infty$.	
(iii)	$I^{\alpha} \in \boldsymbol{B}(BMO, \operatorname{Lip} \alpha),$	$\alpha > 0.$	
(iv)	$I^{\alpha} \in \boldsymbol{B}(H^{p}, \operatorname{Lip}(\alpha - 1/p)),$	$1 {<} p {<} \infty$, $lpha {>} 1/p$.	
(v)	$I^{\alpha} \in \boldsymbol{B}(H^{p}, BMO),$	$1 , \alpha = 1/p.$	
Theorem 4 Let $1 \le n \le q \le \infty \le n \le 1 \le n \le q \le q \le \infty \le 1 \le n \le 1 \le n \le q \le q \le 1 \le n \le 1 \le 1$			

Theorem 4. Let $1 , <math>\alpha + \lambda = 1/p - 1/q$ and $0 < \alpha$, $\lambda < \infty$. Then $b \in \text{Lip } \lambda$ if and only if $[b, I^{\alpha}] \in B(L^{p}, L^{q})$.

Finally, we remark that the results in this note can be easily generalized to regular martingales and to the local field setting.

References

- D. L. Burkholder: Martingale transforms. Ann. Math. Stat., 37, 1494-1504 (1966).
- [2] D. L. Burkholder and R. F. Gundy: Extrapolation and interpolation of quasilinear operators on martingales. Acta Math., 124, 249-304 (1970).
- [3] S. Chanillo: A note on commutators. Indiana Univ. Math. J., 31, 7-16 (1982).
- [4] J.-A. Chao: Maximal singular integral transforms on local fields. Proc. Amer. Math. Soc., 50, 297-302 (1975).
- [5] ——: Lusin area functions on local fields. Pacific J. Math., 59, 383-390 (1975).

- [6] J.-A. Chao: H^p and BMO regular martingales. Springer Lect. Notes in Math., vol. 908, pp. 274-284 (1982).
- [7] R. R. Coifman, R. Rochberg and G. Weiss: Factorization theorems for Hardy spaces in several variables. Ann of Math., 103, 611-635 (1976).
- [8] S. Janson: Mean oscillation and commutators of singular integral operators. Ark. Mat., 16, 263-270 (1978).
- [9] ——: BMO and commutators of martingale transforms. Ann. Inst. Fourier, 31, 265-270 (1981).
- [10] Y. Komori: The factorization of H^p and the commutators. Tokyo J. Math., 6, 435-445 (1983).
- [11] R. Rochberg and G. Weiss: Derivatives of analytic families of Banach spaces. Ann. of Math., 118, 315-347 (1983).
- [12] E. T. Sawyer: A characterization of a two-weight norm inequality for maximal operators. Studia Math., 75, 1-11 (1982).
- [13] M. H. Taibleson: Fourier Analysis on Local Fields. Princeton/Tokyo (1975).
- [14] C. Watari: Multipliers for Walsh Fourier series. Tohoku Math. J., 16, 239-251 (1964).