10. Commutators on Dyadic Martingales

By J.-A. Chao*) and H. Ombe**)
(Communicated by Kôsaku Yosida, m. J. A., Feb. 12, 1985)

§ 1. Introduction. A characterization of $B M O\left(R^{n}\right)$ by commutators with singular integrals was given by Coifman-Rochberg-Weiss [7]. (See also [8].) Later, an analogue for regular martingales is shown by Janson [9]. Recently, Chanillo [3] and Rochberg-Weiss [11] and Komori [10] obtained a similar result on commutators with fractional integrals. It is the purpose of this note to study fractional integrals and commutators in the dyadic martingale setting. A version of fractional integrals I^{α} for dyadic martingales is introduced which is parallel to that on Walsh-Fourier series studied by Watari [14], and that on local fields by Taibleson [13]. The boundedness of commutators $\left[b, I^{a}\right]$ shall be used to characterize the multiplicating function b.
§2. Fractional integrals. Let \mathscr{F}_{n} be the sub- σ - field generated by dyadic intervals of length 2^{-n} in $[0,1], n=0,1,2, \cdots$. A martingale $\left\{f_{n}\right\}_{n \geq 0}$ relative to $\left\{\mathscr{F}_{n}\right\}_{n \geq 0}$ is a dyadic martingale. For an integrable function f on $[0,1)$, the conditional expectations $f_{n} \equiv E\left(f \mid \mathscr{F}_{n}\right), n=0,1,2, \cdots$, form a dyadic martingale whose L^{p} norm, $\sup _{n}\left\|f_{n}\right\|_{p}$, equals to the L^{p} norm of the function f, for $p \geq 1$. We shall identify f with $\left\{f_{n}\right\}$ by writing $f=\left\{f_{n}\right\}$ and assume $f_{0}=0$. Let $\left\{d_{n}\right\}$ be the difference sequence of $f=\left\{f_{n}\right\}$, i.e. $f_{n}=$ $\sum_{k=1}^{n} d_{k}$. The maximal function and square function of $f=\left\{f_{n}\right\}$ are given by $f^{*}=\sup \left|f_{n}\right|$ and $S(f)=\left(\sum_{k=1}^{\infty} d_{k}^{2}\right)^{1 / 2}$, respectively. The following are wellknown. (See [1], [2] and [5].)

$$
\begin{array}{ll}
\left\|f^{*}\right\|_{p} \approx\|f\|_{p} \approx\|S(f)\|_{p}, & \text { for } 1<p<\infty, \quad \text { and } \tag{1}\\
\left\|f^{*}\right\|_{p} \approx\|S(f)\|_{p}, & \text { for } 0<p<\infty .
\end{array}
$$

Now for a dyadic martingale $f=\left\{f_{n}\right\}$ and $\alpha \in \boldsymbol{R}$, we define the fractional integral $I^{\alpha} f=\left\{\left(I^{\alpha} f\right)_{n}\right\}$ of f (of order α) by $\left(I^{\alpha} f\right)_{n}=\sum_{k=1}^{n} 2^{-k \alpha} d_{k}$, whose maximal function is $\left(I^{\alpha} f\right)^{*}=\sup _{n}\left|\sum_{k=1}^{n} 2^{-k a} d_{k}\right|$. If $\alpha>0, I^{\alpha} f$ is simply a martingale transform introduced by Burkholder [1]. It is trivial that $\left\|\left(I^{a} f\right)^{*}\right\|_{p}$ $\leq C\left\|I^{a} f\right\|_{p} \leq C\|f\|_{p}$ for $0<\alpha<\infty$ and $1<p<\infty$. Moreover, we have

Theorem 1. For integrable f,
(2) $\quad\left\|\left(I^{a} f\right)^{*}\right\|_{q} \leq C\|f\|_{p} \quad$ where $1<p<q<\infty$
and $\alpha=1 / p-1 / q$;

[^0]\[

$$
\begin{equation*}
P\left[\left(I^{\alpha} f\right)^{*}>\lambda\right] \leq C\left(\frac{\|f\|_{1}}{\lambda}\right)^{1 /(1-\alpha)} \quad \text { for all } \lambda>0 \tag{3}
\end{equation*}
$$

\]

Note that Watari [14] proved these results for $\left|I^{\alpha} f\right|$ in the place of $\left(I^{a} f\right)^{*}$ by using some orthogonal properties of the Walsh-Fourier series. (2) follows from his version and (1). (3) (as well as (2)) can be obtained by a Calderón-Zygmund type of decomposition argument (or a stopping time) for regular martingales similar to the one used in [4] and [6]. Another proof of (2) is by applying (1) to certain norm estimates of d_{k}.
§3. Commutators and BMO. Martingales of bounded mean oscillation (BMO) are those martingales $b=\left\{b_{n}\right\}$ such that

$$
\sup _{n}\left\|E\left(\mid b-b_{n} \| \mathscr{F}_{n}\right)\right\|_{\infty} \equiv\|b\|_{*}<\infty .
$$

This is equivalent, for dyadic martingales, to that $\sup _{n}\left\|E\left(\mid b-b_{n-1} \| \mathscr{F}_{n}\right)\right\|_{\infty}$ $<\infty$. The John-Nirenberg inequality gives other equivalent norms:

$$
\|b\|_{*} \approx \sup _{n}\left\|\left[E\left(\left|b-b_{n}\right|^{s} \mid \mathscr{F}_{n}\right)\right]^{1 / s}\right\|_{\infty} \quad \text { for each } 1 \leq s<\infty
$$

The sharp function of b is given by $b^{\#}=\sup _{n} E\left(\mid b-b_{n} \| \mathscr{F}_{n}\right)$. We note that $\left\|b^{*}\right\|_{\infty}=\|b\|_{*}$ and $\left\|b^{\#}\right\|_{p} \approx\|b\|_{p}, 1<p<\infty$.

For an integrable function b, we define the commutator with I^{α} by $\left[b, I^{\alpha}\right] f=b I^{\alpha} f-I^{\alpha}(b f)$.

Our main result generalizing the one in Euclidean spaces by Chanillo [3], Rochberg-Weiss [11] and Komori [10] is the following

Theorem 2. Let $1<p<q<\infty$ and $\alpha=1 / p-1 / q>0$. Then b is in $B M O$ if and only if the commutator $\left[b, I^{\alpha}\right]$ is bounded from L^{p} to L^{q}, i.e., $\left[b, I^{\alpha}\right] \in \boldsymbol{B}\left(L^{p}, L^{q}\right)$.

We need a preliminary result on $f_{\alpha}^{*} \equiv \sup _{n} 2^{-n \alpha}\left|f_{n}\right|$ where $f=\left\{f_{n}\right\}$ is a dyadic martingale.

Lemma. Let $1<p<q<\infty$ and $\alpha=1 / p-1 / q$. Then $\left\|f_{\alpha}^{*}\right\|_{q} \leq C\|f\|_{p}$.
The lemma follows from a decomposition (or a stopping time) argument as mentioned before. See also [12] or [3].

Proof of Theorem 2. Suppose $b \in B M O$. Given a dyadic interval J in \mathscr{F}_{n} with length 2^{-n}, let b_{J} be the average value of b on J. Write

$$
\begin{aligned}
& g \equiv\left[b, I^{\alpha}\right] f=\left(b-b_{J}\right) I^{\alpha} f-I^{\alpha}\left(\left(b-b_{J}\right) f \chi_{J}\right)-I^{\alpha}\left(\left(b-b_{J}\right) f \chi_{J c}\right) \\
& \\
& \equiv g^{(1)}+g^{(2)}+g^{(3)}, \quad \text { say. }
\end{aligned}
$$

Now, we choose a t such that $1<t<q$ and $1 / s+1 / t=1$, then we have

$$
\begin{aligned}
E\left(\mid g^{(1)} \| \mathscr{F}_{n}\right)(x) & =E\left(\left|\left(b-b_{J}\right) I^{\alpha} f\right| \mid \mathscr{F}_{n}\right)(x) \\
& \leq\left[E\left(\left|b-b_{J}\right|^{s} \mid \mathfrak{F}_{n}\right)(x)\right]^{1 / s}\left[E\left(\left|I^{\alpha} f\right|^{t} \mid \mathscr{F}_{n}\right)(x)\right]^{1 / t} \\
& \leq C_{1}\|b\|_{*}\left[\left(\left|I^{\alpha} f\right|^{c}\right)^{*}(x)\right]^{1 / t} .
\end{aligned}
$$

To estimate $g^{(2)}$, we first choose p_{1} and v such that $1<p_{1}<v<p$ and suppose $\alpha=1 / p_{1}-1 / q_{1}, 1 / u+1 / v=1 / p_{1}$. We have $1<p_{1}<q_{1}<\infty$ and $1<u, v<\infty$. Then it follows from Theorem 1 that

$$
\begin{aligned}
E\left(\mid g^{(2)} \| \mathscr{F}_{n}\right)(x) & \leq\left[E\left(\left|I^{\alpha}\left(\left(b-b_{J}\right) f \chi_{J}\right)\right|^{q_{1}} \mid \mathscr{F}_{n}\right)(x)\right]^{1 / q_{1}} \\
& \leq C_{2} 2^{-n a}\left[E\left(\left|\left(b-b_{J}\right) f\right|^{p_{1}} \mid \mathscr{F}_{n}\right)(x)\right]^{1 / p_{1}} \\
& \leq C_{2} 2^{-n_{\alpha}}\left[E\left(\left|b-b_{J}\right|^{\mid} \mid \mathscr{F}_{n}(x)\right]^{1 / u}\left[E\left(|f|^{v} \mid \mathscr{F}_{n}\right)(x)\right]^{1 / v}\right. \\
& \leq C_{3}\|b\|_{*}\left[\left(|f|^{v}\right)_{\alpha v}^{*}(x)\right]^{1 / v} .
\end{aligned}
$$

Note that $g^{(8)}$ is constant on J. Hence we have

$$
g^{*}(x) \leq C\|b\|_{*}\left\{\left[\left(\left|I^{\alpha} f\right|^{t}\right)^{*}(x)\right]^{1 / t}+\left[\left(|f|^{v}\right)_{\alpha v}^{*}(x)\right]^{1 / v}\right\} .
$$

Therefore, by Theorem 1 and Lemma, we obtain

$$
\left\|\left[b, I^{\alpha}\right] f\right\|_{q}=\|g\|_{q} \leq C\|b\|_{*}\|f\|_{p}
$$

Conversely, consider a dyadic interval $J \in \mathscr{F}_{n}$ with length 2^{-n}. Let J_{1} be its adjacent dyadic interval of the same size, i.e. $J \cup J_{1} \in \mathscr{F}_{n-1}$. An easy computation shows that for $x \in J$,

$$
\left[b, I^{\alpha}\right] \chi_{J_{1}}(x)=\left(b(x)-b_{J_{1}}\right) 2^{-n \alpha}\left(2^{\alpha}-1-2^{-n(1-\alpha)}\right)\left(2-2^{\alpha}\right)^{-1} .
$$

Hence if $n>N(\alpha) \equiv(\alpha-1)^{-1} \log _{2}\left(2^{\alpha}-1\right)$, then

$$
\left|\left[b, I^{\alpha}\right] \chi_{J_{1}}(x)\right| \geq C(\alpha) 2^{-n \alpha}\left|b(x)-b_{J_{1}}\right|
$$

for some $C(\alpha)>0$. Thus for $x \in J \in \mathscr{F}_{n}$ with $n>N(\alpha)$,

$$
\begin{aligned}
{\left[E\left(\left|b-b_{J_{1}}\right|^{q} \mid \mathscr{F}_{n}\right)(x)\right]^{1 / q} } & \leq C 2^{n_{\alpha}}\left[E\left(\left|\left[b, I^{\alpha}\right] \chi_{J_{1}}\right|^{q} \mid \oiint_{n}\right)(x)\right]^{1 / q} \\
& \leq C 2^{n_{a}} 2^{n / q}\left\|\left[b, I^{\alpha}\right] \chi_{J_{1}}\right\|_{q} \\
& \leq C_{1} 2^{n a} 2^{n / q}\left\|\chi_{J_{1}}\right\|_{p}=C_{1}
\end{aligned}
$$

where $C_{1}=\left\|\left[b, I^{\alpha}\right]\right\| / C(\alpha)$. This implies that $b \in B M O$.
Therefore the proof of Theorem 2 completed.
§4. Hardy and Lipschitz spaces. H^{p} martingales, $0<p<\infty$, are those martingales f whose maximal function f^{*} is in L^{p}. For $\lambda \in \boldsymbol{R}$, a dyadic martingale $f=\left\{f_{n}\right\}$ is said to be in Lip λ if

$$
\|f\|_{(2)}=\sup 2^{n \lambda}\left\|E\left(\mid f-f_{n} \| \mathscr{F}_{n}\right)\right\|_{\infty}<\infty .
$$

Note that $\operatorname{Lip} 0=B M O$ and for $0<p \leq 1$, the dual of H^{p} is $\operatorname{Lip}(1 / p-1)$.
The results in the previous sections about fractional integrals and commutators on L^{p} and $B M O$ can be extended to H^{p} and Lipschitz spaces also. We shall state some generalizations and omit the proofs.

Theorem 3.
(i) $I^{\alpha} \in B\left(H^{p}, H^{q}\right), \quad 0<p<q<\infty$ and $\alpha=1 / p-1 / q$.
(ii) $I^{\alpha} \in \boldsymbol{B}(\operatorname{Lip} \lambda, \operatorname{Lip}(\alpha+\lambda)), \quad 0<\alpha, \lambda<\infty$.
(iii) $I^{\alpha} \in \boldsymbol{B}(B M O, \operatorname{Lip} \alpha), \quad \alpha>0$.
(iv) $I^{\alpha} \in B\left(H^{p}, \operatorname{Lip}(\alpha-1 / p)\right), \quad 1<p<\infty, \alpha>1 / p$.
(v) $I^{\alpha} \in B\left(H^{p}, B M O\right), \quad 1<p<\infty, \alpha=1 / p$.

Theorem 4. Let $1<p<q<\infty, \alpha+\lambda=1 / p-1 / q$ and $0<\alpha, \lambda<\infty$. Then $b \in \operatorname{Lip} \lambda$ if and only if $\left[b, I^{\alpha}\right] \in \boldsymbol{B}\left(L^{p}, L^{q}\right)$.

Finally, we remark that the results in this note can be easily generalized to regular martingales and to the local field setting.

References

[1] D. L. Burkholder: Martingale transforms. Ann. Math. Stat., 37, 1494-1504 (1966).
[2] D. L. Burkholder and R. F. Gundy: Extrapolation and interpolation of quasilinear operators on martingales. Acta Math., 124, 249-304 (1970).
[3] S. Chanillo: A note on commutators. Indiana Univ. Math. J., 31, 7-16 (1982).
[4] J.-A. Chao: Maximal singular integral transforms on local fields. Proc. Amer. Math. Soc., 50, 297-302 (1975).

[^1][6] J.-A. Chao: H^{p} and $B M O$ regular martingales. Springer Lect. Notes in Math., vol. 908, pp. 274-284 (1982).
[7] R. R. Coifman, R. Rochberg and G. Weiss: Factorization theorems for Hardy spaces in several variables. Ann of Math., 103, 611-635 (1976).
[8] S. Janson: Mean oscillation and commutators of singular integral operators. Ark. Mat., 16, 263-270 (1978).
[9] -: BMO and commutators of martingale transforms. Ann. Inst. Fourier, 31, 265-270 (1981).
[10] Y. Komori: The factorization of H^{p} and the commutators. Tokyo J. Math., 6, 435-445 (1983).
[11] R. Rochberg and G. Weiss: Derivatives of analytic families of Banach spaces. Ann. of Math., 118, 315-347 (1983).
[12] E. T. Sawyer: A characterization of a two-weight norm inequality for maximal operators. Studia Math., 75, 1-11 (1982).
[13] M. H. Taibleson: Fourier Analysis on Local Fields. Princeton/Tokyo (1975).
[14] C. Watari: Multipliers for Walsh Fourier series. Tohoku Math. J.. 16, 239-251 (1964).

[^0]: *) Department of Mathematics, Cleveland State University, Cleveland, OH 44115. Partly supported by grants from the National Science Foundation and Cleveland State University. 1980 mathematics subject classification; 60G46; 42A45; 60G42.
 **) Department of Mathematical Sciences, University of Texas at El Paso, El Paso, TX 79968.

[^1]: ——: Lusin area functions on local fields. Pacific J. Math., 59, 383-390 (1975).

