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On Some Algebraic Differential Equations with
Admissible Algebroid Solutions

By Nobushige T’OD.*) and Masakimi KATO**)

(Communicated by Kbsaku YOSID,, M. Z..., Dec. 12, 1985)

1. Introduction. About fifty years ago, K. Yosida ([9]) proved the
following theorem.

Theorem A. When the differential equation with rational coefficients
P bw (ap.bq:/:O),(w’)=:0 aw /--0

where m is a positive integer and aw, , bw are irreducible, admits
at least one transcendental v-valued algebroid solution in izloo, then it
holds that
( 1 ) max (p, q+2m)g2m.

This theorem was extended by several authors ([1], [2], [3], [4] etc.).
In this paper, we shall consider the differential equation
( 2 ) D(w, w’, ..., w(n))-P(w)/Q(w),
where 12(w, w’, ..., w(n))= Y,e, C,W*(W’)’’’ (W()) (n>__l) is a differential
polynomial with meromorphic coefficients, I being a finite set of multi-
indices 2=(io, i,..., i), (i, non-negative integers), for which c,:/:0, and
where P(w), Q(w) are polynomials in w with meromorphic coefficients and
m.utually prime over the field of meromorphic functions"

P(w)-j=o ajW (ap :O), Q(w)-=o bw (bq :O).
The term "meromorphic" (resp. "algebroid") will mean meromorphic (resp.
algebroid) in the complex plane. Put

zl=max ,=0 (]+ 1)i, Zlo max ,=1 ]i, d=max ,=0 i
and

a=m.ax,e,= (2]-- 1)i.
An algebroid solution w=w(z) of (2) is said to be admissible when T(r, f)
--S(r, w) for all coefficients f=c, a and b, in (2), where S(r, w) is any
quantity satisfying S(r, w)=o(T(r, w)) as ro, possibly outside a set of r
of finite linear measure.

Recently, Gackstatter and Laine ([1], [2]), Y. He and X. Xiao ([3])
extended Theorem. A as follows"

"If the differential equation (2) admits an admissible algebroid solution
w-w(z) with branches, then

( ) q=<4Z/o(--l), pz/+4Z/o(--l) ([1], [2]),
(ii) q2a(--l.), pq+d+z]o(1--(w, co)) ([3])

where 8(w, c)--l--lim.sup,.(r, w)/T(r, w)."
In this paper, we shall improve these results and give some examples.
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We use the standard notation of the Nevanlinna theory of meromorphic
functions ([5]) or algebroid functions ([6], [7], [8]).

2. Lemmas. We shall gi.ve some lemmas and a notation here.
Lemma 1. Let w be a nonconstant algebroid function, then

m(r, w()/w) S(r, w) (n-- 1, 2, ...) (see [8]).
We can easily prove this lemma as in the case of meromorphic func-

tions (see [5], p. 115) using the inequalities (20) and (21) in [8].
Lemma 2. Let P(w) and Q(w) be as in 1 and w=w(z) be an algebroid

function such that T(r, a)=S(r, w) (O]<=p) and T(r, b)--S(r, w) (Ok<=q).
Then,

T(r, P/Q)--max (p, q)T(r, w)+S(r, w) ([1], [4]).
Let w=w(z) be a ,-valued algebroid function and a be a pole of w.

Then, in a neighbourhood of a, we have the following expansions o w"

w(z) (z a)-’/’S((z a)n)
where i=1,2, ...,z(a)(,), lr, 1=<, 2=, and S(t) is a regular
power series of t such that S(0):/:0. Put

n(r, w)= .ll_, .() (2- 1)
and

,N(r, w)=.[: (n(t, w)--n(O, w))/tdt+n(O, w)log r.

It is trivial that
(3) N(r, w)G(-l)N(r, w).

:. Theorem. We use the same notation as in 1-2.
Theorem. If the differential equation (2) admits an admissible alge-

broid solution w=w(z) with branches, then
max (p, q+d)d+a

and
p=<min {q+d+lo(1--(w, c)+(w, c)),

where =lira sup_ N(r, 2)/ T(r, w) (the ramification index of the Riemann

surface of w) and (w, c)=lim sup_ N(r, w)/T(r, w).

Proof. Let a:/:0 be a constant such that P(,):/:0 and Q(,):/:0. This
is possible as a.b:O. Substituting w=w(z) in (2) and dividing by
(w(z)-a), we have the relation
(4) 9(W, W’, ", w(n))/ (W--O)--P(w)/ (W--O)Q(w).
Note that P(w(z))_O.and Q(w(z))O as w=w(z) is admissible, and that
P(w), (w-a)Q(w) are mutually prime by the choice of .
estimate the T-function of both sides of (4). By Lemma 1,
(5)

()
(6)
(ii)

where w-a=(z-c)-/"S((z-c)/") near z=c (z=>l, rl).

Here, we

m(r, 9/(w-a))<=dm(r, 1/(w-a))+S(r, w).
We denote by r(c, f) the order of pole of f at z= c.
When c is not a pole of w,

r(c, [2/(w-a))=r(c, 1/(w-a))+r(c, 1/Q(w))+ , r(c, a).
When c is a pole of w,

r(c, (w()/(w--oOYO=r(c, ((w--oO()/(w--o)))=/di (/1),
Therefore,
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r(c, cw(w’Y’. (w())’/ (w--a))_l ,Tffi li, /r(c, c)
SO that
( 7 ) ’(c, 9/(w--a)a)<__zlolu+, .(c, c)=zlo+Zlo(f--l)+_ r(c, ca).
From (6) and (7), we obtain
( 8 ) N(r, [2/(w--a))<__dN(r, 1/(w--a))+N(r, l/Q)

+Z]o(N(r, w)+N(r, w))+S(r, w).
As N(r, 1/Q)<=T(r, Q)+O(1)=qT(r, w)+S(r, w), using Lemma 2 and com-
bining (5) and (8), we obtain
( 9 T(r, [2/(w--a))<:(q+d)T(r, w)+z]oN(r, w)+zloN(r, w)+S(r, w).

On the other hand, by Lemma 2
(10) T(r, P/(w-a)Q)=max (p, q+d)T(r, w)+S(r, w).
From (4), (9)and (10), we obtain

max (p, q+d)T(r, w)<=(q+d)T(r, w)+zloN(r, w)+zoNo(r, w)+S(r, w),
rom which we easily have
(11) p<q+d+Jo(1--O(w, oo)+(w, oo)).

Next, put w--a=l/v in (2). Then, as
w()=(1/v)()=H(v, v’, ..., v())/v+ (]=1, 2, ...),

where H is a homogeneous polynomial of degree ] in v, ..., v (), and
cwi(w’)’ (w (n))t.= C(aV+1)HI H"V- o+2,+ + +1)),

the differential equation (2) becomes
(12) H(v, v’, ..., v(n))--P(v)/Q(v),
where deg P= p, deg Q=p- zJ when q <:p- z] and deg P= q+z], deg Q= q
when q>p-A,

.Hn v +2il+...+(n+l)in)H(v, v’, v(n))=EeI c2(ovt-1)iH" . -(0

We estimate T(r, H). First, by Lemma 1 we can easily obtain
(13) m(r, H) <=z]m(r, v)+ S(r, v).
Next, we estimate N(r, H).
(i) When c is not a pole of v,

r(c, H)<=ZJo(l--r) +, r(c, ca) __< Z/o (/ l) + :Y, v(c, c),
where v(z)--v(c)+(z-c)/,S((z-c)1/.) near z=c (p>_2, rl).
(ii) When c is a pole of v of order r and not a branch point, as

r(c, c(av +l)H H,"V-(io+2i’+’"+(n+l)in))

_
Tz -T(C, CA)

r(c, H) <r+. r(c,
(iii) When c is a pole of v and a branch point, as

r(c, c(av+ 1)ioH ...H,-v-(o+,+

rA+(/-I) -].=1 (2]--l)i+r(c, G)<=rA+(p--1)a+v(c, c),
where v(z)-=(z-c)-/,S((z-c)/.) near z= c (/>__2, rl),

r(c, H)grA-t-(/--I)a+ , v(c, G).
From (i), (ii) and (iii), we obtain the inequality
(14) N(r, H)<=N(r, v)+aN(r,)+S(r, v).
Using the inequality obtained from (12), (13), (14) and by Lemma 2, we
obtain the inequality
(15) max (p, q--)z]+a (<_+2a(--1)).
Combining (11) and (15), we have the second inequality of Theorem.
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Remark. By (3), we have the inequality
Ao(1--O(w, oo)+(w, oo))<=Ao(1--O(w, oo)).

Corollary. If =0, then q=O, p=<min {A, d+Ao(1--t?(w, oo)}.
This is an extension of Theorem 4 in [9].
4. Examples. We shall give some examples which show that our

theorem is better than that of He and Xiao.
Example 1 The algebroid function w defined by wTM+ 2-- 1 / cos z 0

(m=>l) is an admissible solution of the differential equation
(w’) (w +5w’+8wTM+ 4) /mw’-.

In this ease, q+d+zJo(1-tg(w, c))=8m>p and q+d+Ao(1-O(w, co)+
(w, oo))= -ba=6m=p.

Example 2. The algebroid function w defined by w--3 tan" z+z-2
=0 (m>=l) is an admissible solution of the differential equation
mw’-l(w’)+w’= (4wTM+ 12zw4’+ 12(z-1)wTM+ 4z3-12z 11) / 12row-1.

In this case,
q+d+Ao(1--t?(w, oo))=Sm:>p, A+a=Sm--1

and
q+d+Ao(1--t?(w, oo)+(w, oo))=6m=p.
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