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92. On Some Algebraic Differential Equations with
Admissible Algebroid Solutions

By Nobushige TopA*) and Masakimi KATO**)
(Communicated by Koésaku YO0SIDA, M. J. A., Dec. 12, 1985)

1. Introduction. About fifty years ago, K. Yosida ([9]) proved the
following theorem.

Theorem A. When the differential equation with rational coefficients

W)= 35 0w [ Thoo biw*  (a,b,%0),

where m is a positive integer and >, aw’, 3 byw* are irreducible, admits
at least one transcendental v-valued algebroid solution in |z|<oo, then it
holds that
(1) max (p, ¢+2m) < 2my.

This theorem was extended by several authors ([1], [2], [3], [4] etec.).
In this paper, we shall consider the differential equation
(2) Qw, w’, - -+, w™)=Pw)/Qw),
where 2(w, W, - - -, w™)=3c; cwo W) - - (w™)» (n=1) is a differential
polynomial with meromorphic coefficients, I being a finite set of multi-
indices A=(iy, %y, - - -, 1,), (¢, : non-negative integers), for which ¢;+0, and
where P(w), Q(w) are polynomials in w with meromorphic coefficients and
mutually prime over the field of meromorphic functions :

Pw)=335 aw’ (a,#0), Qw)=>¢,bw* (b,+#0).
The term “meromorphic” (resp. “algebroid”) will mean meromorphic (resp.
algebroid) in the complex plane. Put
d=max,e; > 5o (G+1);, d,=maXe,; D 3171, d=maX,;D )} 0%
and
o=maX,; > 1= (27 —1)i,.

An algebroid solution w=w(z) of (2) is said to be admissible when T'(r, f)
=8(r, w) for all coefficients f=c,, @, and b, in (2), where S(r, w) is any
quantity satisfying S(r, w)=o0(T(r, w)) as r—oo, possibly outside a set of »
of finite linear measure.

Recently, Gackstatter and Laine ([1], [2]), Y. He and X. Xiao ([3])
extended Theorem A as follows:

“If the differential equation (2) admits an admissible algebroid solution
w=w(z) with v branches, then

(i) ¢=44,0-1), p<4+44,0—-1) ({11, [2]),

(i) ¢=20(v—1), p<q+d+4vQ1—0(w, o)) (13D
where O(w, o0)=1—1im sup,_., N(r, w)/ T(r, w).”

In this paper, we shall improve these results and give some examples.
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We use the standard notation of the Nevanlinna theory of meromorphic
functions ([5]) or algebroid functions ([6], [7], [8]).
2. Lemmas. We shall give some lemmas and a notation here.
Lemma 1. Let w be a nonconstant algebroid function, then
m(r, w™ |w)=8Sr, w) @®=12 -..) (see [8]).

We can easily prove this lemma as in the case of meromorphic func-
tions (see [5], p. 115) using the inequalities (20) and (21) in [8].

Lemma 2. Let P(w) and Q(w) be asin §1 and w=w(z) be an algebroid
function such that T(r, a,)=8S(r, w) 07 p) and T(r, b)=8S(r, w) 0<k<q).
Then,

T(r, P/@)=max (p, )T (r, w)+S(r, w) (11, [4D.
Let w=w(2) be a v-valued algebroid function and a be a pole of w.
Then, in a neighbourhood of a, we have the following expansions of w :
w@)=(z—a) " S((z —a)'*),
where 1=1,2, ---, p(a) (£v), 1<, 154, D 4,=v and S(¢) is a regular
power series of ¢ such that S(0)-£0. Put
(7, w)"_‘Z)a[sr Zé‘(ff @,-1
and

vN,(r, w)=_[: (ny(t, w) —m,(0, w))/tdt +n,(0, w) log 7.

It is trivial that
(3) N, (r, w) <(—DN(r, w).

3. Theorem. We use the same notation ag in §§1-2.

Theorem. If the differential equation (2) admits an admissible alge-
broid solution w=w(z) with v branches, then

max (p, g+ 4 =d+4-0¢
and
p<min{g+d+4,(1 —0(w, 00)+&(w, o)), 4+0¢},
where ¢=lim sup,_., N(r, X)/T(r, w) (the ramification index of the Riemann
surface of w) and &w, oo)=lim sup,_. N, w)/T(r, w).

Proof. Let a+0 be a constant such that P(a)#0 and Q(«)+#0. This
is possible as a,-b,#0. Substituting w=w(z) in (2) and dividing by
(w(z) —a)?, we have the relation
(4) Qw, w’, -, w™) [ (w—a)'=Pw)/(w—a)'Qw).
Note that P(w(z))=0 and Q(w(z))=£0 as w=w(z) is admigsible, and that
P(w), (w—a)*Q(w) are mutually prime by the choice of «. Here, we
estimate the T-function of both sides of (4). By Lemma 1,
(5) m(r, 2] (w—a))<dm@r, 1/ (w—a)+S(r, w).

We denote by z(c, f) the order of pole of f at z=c.
(i) When cis not a pole of w,
(6) z(¢, 2/ (w—a)") <(e, 1/ (w—a))+ (e, 1/ Qw))+ 2 (e, ay).
(ii) When c is a pole of w,

(e, (W [ (w—a)H)=1(c, (w—a)®[(w—a))")= pli, =1,

where w—a=(z—c¢)"/*S((z—¢)"/*) near z=c¢ (u=1, t=1). Therefore,
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(e, cw(w')- - - (w™)n [ (w—a)) Zp 37 U+ (e, €)
so that
(7) (e, 2/ (w—a)) Zd,p+ 3 2(c, e)=4d,+4,(u—1)+ 3 (e, c)).
From (6) and (7), we obtain
(8) N(r, Q/(w—a))<dN(r,1/(w—a))+N(r,1/Q)
+4,(N(r, w)+ N, (r, w))+S(r, w).
As N(r,1/@ T (r, @+0Q)=qT(r, w)+S(r, w), using Lemma 2 and com-
bining (5) and (8), we obtain
(9) T, 2/(w—a))<(@+d)T(r, w)+4,N(r, w)+ 4,N,(r, w)+ S, w).
On the other hand, by Lemma 2
10) T(@r, P/ (w—a)*Q)=max (p, ¢+d)T(r, w)+ S(r, w).
From (4), (9) and (10), we obtain
max (p, ¢+ )T, w)<(@+d)T(r, w)+4,N(r, w)+4,N,(r, w) + S, w),
from which we eagily have
11 P=q+d+4,(1 —0(w, oo)+&(w, 0)).
Next, put w—a=1/v in (2). Then, asg

wO=QA/)P=H,w, v, -+, v9)[v/* (G=1,2, ---),

where H, is a homogeneous polynomial of degree j in v, - -+, ¥, and
clwio(wl)il. . ~(w<"’)i"=cx(ow+1)”'°H{‘- . 'H:'Ln,v-(io+2i1+~u+(n+1)in)’
the differential equation (2) becomes
12) H®, v, -+, v™)=P®)/QW),
where deg P=p, deg Q=p—4 when ¢<p—4 and deg P=q+4, degQ=¢q
when ¢>p—4,
H('v, ,v/, e vm))=2xe1 cl(oz'v+1)‘°H{1- . .H:'L,.,vd—(io+2i1+-~-+(n+1)in).
We estimate T(r, H). First, by Lemma 1 we can easily obtain
13) m(r, H) < Am(r, v)+ S(r, v).
Next, we estimate N(r, H).
(i) When c is not a pole of v,
(e, H)<4,(u—7)* + 3 7(e, ) =4,(p—1D)+ 3] 2(c, ¢y,

where v(z)=v(c)+ (2 —¢)/*S((z —¢)"/*) near z=c¢ (p=2, r=1).
(ii) When c is a pole of v of order r and not a branch point, as

(¢, e{av+1)°H. . - Hjpp?~Gortiatribiny <z f 4 1(g, ¢y),

(e, H)<td+ 3 <(c, ).
(iii) When c is a pole of v and a branch point, as
T(C, cl(ow—}—l)"“H{‘- . _H:‘En,vd—(io+2i1+---+(n+1)in))

<cd+(u—1) 377 2F— 1D+ (e, ¢) <td+(p—1o+12(c, ¢,

where v(z)=(z—¢)""/*S((z—¢)'*) near z=c (u=2, r=1),
(e, H)<td+(u—1o+3 (c, ).

From (i), (ii) and (iii), we obtain the inequality
(14) N(r, H)<AN(r, v)+oN(r, X)+S(r, v).
Using the inequality obtained from (12), (18), (14) and by Lemma 2, we
obtain the inequality
a15) max (p, ¢+ ) <440t (£4+20(v—1)).
Combining (11) and (15), we have the second inequality of Theorem.
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Remark. By (8), we have the inequality
4,1 —0(w, 00)+&(w, 0))Zvd,(1—6(w, o)).

Corollary. If £€=0, then ¢=0, p<min {4, d+ 4,1 —6(w, o)}

This is an extension of Theorem 4 in [9].

4. Examples. We shall give some examples which show that our
theorem is better than that of He and Xiao.

Example 1. The algebroid function w defined by w*™+2—1/cos* 2=0
(m=1) is an admisgsible solution of the differential equation

W)’ = (W™ +5w'*™+ 8w*™ +-4) | m*w*™ .

In this case, ¢+d+vd,1—60(w, ©0)=8m>p and q+d+4, A —60(w, o)+
&(w, 00))=A4+0&=6m=p.

Example 2. The algebroid function w defined by w’™—3 tan®z+4+2—2
=0 (m=1) is an admissible solution of the differential equation

mw (W) +w’' = (dw'™ + 122w ™+ 12(2F — 1)w*™ + 42° — 122 — 11) / 1 2mw*™~ 1.
In this case,
q+d+vd,(1—0(w, ©))=8m>p, Ad+cé=8m—1
and
q+d+4,1—6(w, o) +&(w, 00))=6m=0n.
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