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1. In the present note we consider the mean square of individual
Dirichlet L-functions.

Let be a primitive character (mod q), and put

E(T, Z)= L +it, Z dr- e(q.__) T log (qT/2z)+2’+2 , (logp)/(p--1)
q

where is he Euler function, " the Euler constant, and p is a prime
divisor of q. Then our problem is o find an estimate of E(T, ) as uni-
form as possible for both parameters q and T. Our argument is based .on
the following -analogue of the important formula (3.4) of Atkinson [1].

Lemma 1. If ORe(u)< 1 then

( 1 L(u, Z)L(1 u, 2) .(q).- 1 (u) + (1 u) + 2’-t- log
2

log/)}
where g(u, Z) is the analytic continuation of
( . ) (, Z) exp (--.rdny/q)y-(l+y)-dy

+=la(n, 70 ; exp (2iny/q)y-U(1 +y)U-’dy,

which is co.nvergent when Re(u)O. Here

a(n, Z)=q-1 , Z(m)2(m+a) exp (2zimn/aq).
al m=l

This can be proved by a simple modification of our argument used in
[6]. We denote by g(u, Z) the first sum. of (2). To get an explicit represen-
tation of g(u, ) which holds at least for Re(u)3/4, we need some infor-
mation on

A(x)= a(n, Z).
To this end we put

F(s,

which is obviously convergent for Re(s)>1. Expressing F(s, Z) by a com-
bination of Hurwitz zeta-functions, we get

Lemma 2. F(s, ) is entire, and when Re(s)O
F(s, Z)= 2(qr(Z))- 1(2/q)(8-1)/(1 s)

(n)d(n)n (Z(- 1) exp (- 2uin/q)--cos (s) exp (2in/q)),
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where r is the Gauss sum, and d is the divisor function.
Then we may show, by a routine argument, a truncated form of the

Voronoi type expansion of A(x), which gives rise to
Lemma :}. For any X>=I

TM

Now by the partial summation we have, or any half an odd integer N,

(3) g,(u, Z)= a(n, )h(n, u)--A(N)h(N, u)- A(x)h(x, u)dx,
x

where

(4) h(x, u)=Jo exp (--2ixy/q)y-(y+l)u-dy.

And Lemma 3 implies the convergence of the integral of (3) for Re(u)3/4
(cf. [1, p. 359]), whence the required analytic continuation.

2. Now integrating the expression (1) on the segment u=l/2+it,
--T_t_T, we get

E(T, )=Im {E(T, Z)+E(T, 2)}+0(1),
where

p1/2 iT

E(T, ) g(u, )du.
J1/2 -iT

Then by an idea of Jutila [4] (see also Ivi5 [3, p. 476]) we have
Lemma 4.

E(T, Z)<<Max Min GL+G- E,(V+u, ) exp (-(u/GY)du,
V G -where L=log qT and LgGgVL-, T/2gVg2T.

To estimate this integral we use (3) with an M such that
qV/2gMgqV, A(M)(((qV)/+q/(qV).

Lemma 3 implies obviously the existence of such an M. Next in (4) we
take the new path of integration" y=r exp (-ia) (0gr) with a small
a0. Then it is not difficult to see the absolute convergence o all relevant
multiple integrals; we may perform the integration with respect to u
inside the x- and y- integrals, and then restore the line o y- integral to the
original one. In this way we get

(
d-= a(n, ) I: f(n, y)g(y)dy-A(N) I: f(N, y)g(y)dy

V ;; A(x)x-’ f: 1 +y)-’fo(X, y)g(y)dydx+;; A(x)x-’ I: (1 +y)-’

(+elG log (1 + 1 /)+ (log (1 + 1/))-) f(x,

=P--P-P+P,
say, where

f(, )=ex (-2iz/q) ees (V lg (1 +1/)-/2),
g() ((+1))-(/ (log (1 + 1 /))- ex (- (1/4)(G log (1
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To estimate P we divide it into two parts P and P. according to yqV/x
and yqV/x. Note that we have qV<=x. It is easy to see that P is
negligible. As for P we have

P-- V A(x)x-1 k(y)((l+y) g(y)) dy
/x

where

k(y)= fo(X, )d.
qV/x

The second mean value theorem, gives k(y) ((q / x also we have ((1 + y)-Ig(y))’
exp (-G/20) if yl and (Gy-+y-) exp (-(G/2y)) i yl. These
and Lemma 3 yield
( 6 ) P((qV)/--q/(qV)gG-.
In just the same way we may show that
( 7 P ((qV)/+ q/(qV)9V-and
( 8 P((qV)/+q/(qV)gV-.

3. P is more difficult to estimate than other P’s; the difficulty is
caused by the fact that we now need a sharp estimate of individual a(n, Z).
For this sake we appeal to

Lemma 5. If q is a prime, then
la(n, Z)[<=2d(n)(q, n)/q

This is a simple consequence of a result of Well [7].
Thus we assume, hereafter, that our modulus q is a prime.
Now we put

l(x, y)= f(x, )d.
GL-1

Then we have

P a(n, Z) l(n, y)g’(y)dy+ O(e-
n<N GL-

We note that g’(y)((Gy-; also l(n, y)(<q/n if nqVLG and (<y/V-/ i
n=qVL2G-. These and Lemma 5 yield
( 9 ) P ((qV)/G- (/) + q/)L.
Therefore from Lemma 4 and (5)-(9) we obtain

Theorem. Let be a non-principal character mod q, a prime. Then
we have, for T>=I,

E(T, Z) ((((qT)/+ q/) (log qT).
Remark 1. Our result should be compared with Theorem 2 of Heath-

Brown [2].
Remark 2. In our later notes the ;-analogue of Atkinson’s formula

[1, p. 354] and the twelfth power moment of individual L-functions (cf.
Meurman [5]) will be investigated by elaborating the above argument, both
for composite moduli.
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