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1. Introduction and pseudo.differential operators in Gevrey classes.
In [6] we give an estimate o multi-products of pseudo-differential opera-
tors with symbols in S. This corresponds to the case -=1 and /---0 in
the sense of HSrmander [3]. In the present paper we treat the general
case of (p, ). As an application, we improve a result of Gevrey hypoel-
lipticity obtained by Hashimoto-Matsuzawa-Morimoto [2]. The detailed
background and description will be published elsewhere.

The symbols we want to treat in this paper are the following"

Definition. Let m e R, 1, ’1, 0 and 0pl, 1 with
(1--)1. We say that a symbol p(x, ) belongs to a class SG,;,,, if
p(x, ) satisfies

i) there exist constants C, M and h such that
( 1 ) ()(x, #)]CM-( +t)a "(fl ’+()

if
ii) or any multi-index a there exists a constant C. such that

(2) IP(,),,
for all x, , where M is a constant independent of

This definition owes to C. Iwasaki (see also [4]). We also note that
the class SG,;,,, contains the class S,, studied in [2] if we set
a/(p-3), ’=1 and O=a/(p-$) (=their

Let P=p(X, D) denote a pseudo-differential operator with a symbol
p(x, ) e SG;,,, defined by

PU: (2w)-n.[ e’p(x, )()d, u

where fi()is a Fourier transform of u. Then, by the method of [7] we
can prove

Proposition 1 Let )()’ be a class of ultradistributions studied in [7]
Then, pseudo-differential operators with symbols in SG;.,.,, act on L
and their images are also contained in’

This proposition was first proved by the author in the case of p=l,
3=0 and by C. Iwasaki in the case of 0.

Proposition 2. Let 1 and let WF(,(u) be the wave front set of u
in the Gevrey class of order . Assume p0 and max (, , ’/p). Then

for p(x, ) e SG;,,, we have
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WFo,,(Pu) WFo(,)(u).
2. Multi.products. Let Pj=p(X, D), p e SG.;.,,, with

Consider
( 3 ) Q+=PP....P+.

Theorem 1. Assume that each p(x, ) satisfies (1) and (2) with con-
stants C, M, h and C, independent of ]. Denote C=max,z (C, C,), where
no=2[n/2+l]. We assume = if ’=p=l, or 0 if p<l and ’=1.
Then, the symbols q+(x, ) of (3) are represented as

q+ ,(x, ) q+ ,(x, )++(x, )
and qg+ (x, ) and q,+ (x, ) satisfy
(4) q ()C+AM(’"+)"(fl’+fl’(’-)<)’)()+1()

(6) I,+ ("[gC+a ’-[(’+l)m] ’" exp (-(}/’)1() maZ

In (4)-(6) the constants A, M, C,, C, h and (>0) are independent of
and ft.

The proof will be done by using the inductive method of and the idea
used in 1 of [5], where we divide the symbols p(x, ) o.f Fourier integral
operators into. the sum of symbols p(x, ; 5) and $(x, ; O. These symbols
depend also on a parameter and satisfy "-g(}/8 on suppp and
5-(5}/10 on supp$". We make this division by using cut unctio.ns
in Gevrey classes.

Corollary. Let p(x, ) e SG.;,..,. satisfy (1) and (2) with C<A and
C,<A (ano) for A in the .above theorem. Then the inverse operator of
I-P is obtaind by the Neumann series :oP and it is represented as the
sum r(X, DA+e(X, D) of pseudo-differential operators r(X, D) and
e(X, D) with symbois r(x, ) e SG.;,,,,, and r(x, ) e (,), where () is a
class of regularizers defined in Definition (S) of [6].. Gevrey hypoellipticity. Let P=p(X, D) be a differential oper-
ator with co.efficients in a Gevrey class () of order a. Assume
( 7 ) ]p(x, )]C(}’ for large
( S ) [(")(x, )/p(x, )]>CM("+)a()

for (}h[a[ (6=a/(p-))
and p. Under these conditions Hashimoto-Matsuzawa-Morimoto [2]
constructed a parametrix Q=q(X, D) of P as q(x, ) e SGL’.,(8=a/ (p-6))
and QP-I is an integral operator with a kernel in the Gevrey class of
order 8=a/(p-). Set =a/(1-). Then, we can generalize (8) as

()

for <>
Now, consider a pseudo-differential operator P=p(X, D) with a symbol
p(x, ) e SG;.,.,, and assume (7), (8)’ and p>. Then, by using Corollary
in 2 we can prove

Theorem 2. The parametrix Q of P=p(X, D) is constructed as Q=
S --mq(X, D) q(x, ) e G,;.,.,, .and it satisfies



No. 9] Multi-products 293

QP-I e
For example, consider an operator

P x(iD,+D)+ 1 in R
following T. Matsuzawa. Then, modifying xl for large [x] we can prove
that its symbol satisfies (7) and (8)’ with =4/3 and p=1/2, =1/4. So,
by our method we can construct its parametrix Q as Q=q(X, D), q(x,

Ge S li.lli;ilS.l,il such that QP-I e (1). So, we have
WF()(Pu) WF()(u).

This result is an improvement of the one in [2], since we obtain only
WF()(Pu)=WF()(u) by their method.

As another example, we consider an operator
P D,+a(x)D+D in R,

where a(t)belongs to ((+’)/)(R) and satisfies a(t)=t (t]l) and [a(t)]
1 (]t2). Then, we can construct a parametrix Q of P as Q=q(X, D),
q(x, ) e ,;.,,, (=1/(k+1), =(k+l)/k 1/(1-)]) and QP-I
So, we obtain

and
(10) WF(+)(Pu)=WF(+,(u).
We note that by Baouendi-Goulaouic [1] (the case k= 1) and Y. Morimoto
(the general case) the property (10) is optimal for the index of the
estimation
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