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1. Introduction. Let (/2, , P, t) be a filtered probability space and
let [Bl(t), ...,Bn(t)] be an t--BMn (B(t) is R2-valued), where BM
denotes an r-dim. Brownian motion starting rom x e Rr. Let denote
the set o points (z, ..., zn) e Rn such that z=z or some i=/=] and z+/-

denote (y,-x) or z=(x, y)e. We consider the ollowing stochastic
differential equation (abbreviated" SDE) describing an interacting n-
particle system in R starting rom (z, ..., zn)
1 dZ(t)=dB(t)+ j..j ’g+/-H(Z(t)--ZJ(t))dt i-- 1, ..., n,

Z(O) z i= 1, ., n,
in which,

’ e R, =/=0 i= 1, ..., n,
H(z)=g(Izl), (g+/-H)(z)=(gH(z))- z e R, =/=0,

where g e C(0, oo) and gH=(3H/az, ..., aH/3z) e R. For a typical
example, i we set g(r)=--(1/2z)log r and d--l, then the above system of
SDE describes a dynamics of n vortices in incompressible and viscous
fluid in R, where the constants ’ denote the vorticity o. the i-th vortex
([1], [3]). Hence we call this the SDE representing the vortex flow. (1)
is significant in connection with the nonlinear SDE in

dZ(t)=dB(t)-f ’+/-H(Z(t)--z)/t(dz)dt,

where B(t) is a BM and/t(dz) is the law of Z(t). Particularly the SDE
representing the vortex flow is related to the Navier-Stokes equation ([3]).

The problem we consider is the existence and uniqueness o a solution
o 1). In act H. Osada ([4]) proved that in the vortex flow case, (1) has
a unique strong solution, using an estimate of the undamental solution
of a parabolic equation with a generalized divergence form. In this
paper, under a suitable conditio.n on the singularity of g(r) at r--0 and
assuming that (’} has the same sign, we prove the unique existence o a
solution or a general (1) including the vortex flo.w case by a probabilistic
method, which seems simpler than Osada’s. But in Osada’s argument,
the equi-sign property of (’} is not necessary.

One can explain intuitively the reason why the equi-sign property
(y} simplifies the situation: Assuming g’(r)O, we can see that the drift
acts on {Z, Z} as if Z and Z rotate around (Z-ZO/2 clockwise with
intensities ’g’(r) and ’g’(r) (r--IZ--Z]) respectively. This fact prevents
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Z and Z from approaching each other.
2. Result. We are interested in the case" g’(r) is unbounded near

r-0 because, otherwise, (1) has a unique strong solution. From now on
we only consider g(r) e C(0, oo) satisfying the following conditions"
(2) g(0+)=+ or g(0+)=--c,
( 3 ) g"+(2d-1)/rg’<:const, if g(0+) +c,

_>_ const, if g(0+)
( 4 g’(r)-O(r) as r ’It is easy to see that g e C(0, o) satisfies (2)-(4) if and only if g(r) is of
the form

g(r) c+ cr+i p(s) /s- ds,

in which, c, c. e R and p is a C and monotonic function on (0, ) such

that (i) [ p(r)/r-dr=+o or-c accordingly as pe or pe $, and
J0+

(ii) p(r)=O(r) as r o. First of all we note that
(5) r-’g’(r) is bounded near r=0.

We assume that a starting point (z, ..., z) does not belong to unless
otherwise stated. Since g’(r) is divergent at r=0, the existence of a solu-
tion is not obvious. But (1) is meaningful up to hitting , because ’+/-H(z)
is locally Lipschitz continuous outside z=0 and grows in linear order as
Iz[ ’ o on lzl_>_ for each >0, which results from (4). More precisely, for
a small enough0 we set

..=inf {t => 0" r(t) =} i :/:],
v’---- min** v.,

where r,(t)=lZ*(t)-Z(t)[. Clearly 0r’_<_ +o and r is nondecreasing as
$ 0. If we define r=lim,0 r, then it is easily seen that (1) has a unique

solution up to r.

Theorem. Suppose that ’0 for .all i or ’0 for all i. Then for
any starting point (z1, ..., zn) e , P(r= + c)--1.

If this theorem is proved, then the unique existence of a solution of
(1) is immediate as just mentioned.

3. Proof of Theorem. For the statement of the following lemma,
which plays an important role in our arguments, we introduce the follow-
ing definition. Let a be an ,-stopping time for which there exists a
sequence of nondecreasing -stopping times {a}__ such that Oaa n--
l, 2,... and a, a as n ’ oo. We say that [m(t)’O<=ta] is an t-local
martingale up to.a if [m(tAa)’t_O] is an ,-local martingale for each
n>__l. Then we can define a quadratic variational process [(m}(t) O_ta]
up to a as ollows (m}(t)=(m}(t) or O<_t<_a and n>__l, where m(t)=
m(t/kan) tO. Hence, from our definition [m2(t)-(m}(t) O_ta] is an
,-local martingale up to. a.

Lemma 1. Let [m(t)" O<__ta] be an ,-local martingale up to a with
m(0)---0. Then with probability one, either (i) or (ii) occurs"
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( ) re(t) has a finite limit as t a,
(ii) lira sup re(t) + oo, lira inft re(t) .
Proof. We set o(t)= inf {s" (m}(s) t} for p_>_ 1. By the same argu-

ment as Theo.rem II-7.2’ in [2], B(t)=lim m(%A(t)) exists a.s. and we
can regard B as a (1-dim.) Brownian motion up to (m}(a-). On the other
hand it is easy to see that B((m}(t))=m(t) for Ota. From this, the
lemma is proved immediately.

We assume that the sign of all r is the same. From ItS’s formula
we have

( 6 ) 1 Zt(t) J2==1 zt ]2+=1 2T .[[ Z. dB +(2d)(=
( 7 ) rJH(g(t)-Z(t))

for Otr. We choose r>O so that r<min/J and define =r/r
for i= 1,. ., n. Then using ItS’s formula, we have
( 8 Z(t)-Z(t)[=z-z]

+ 2(++d-

(Z*-ZO. (Z*-Z)(,-**-6,+,)ds

x g’(I
x (Z-Z). (Z-Z) ds,

or 0t<. Here denotes Kroneeker’s delta.
Lemma 2. sup0t< Z(t) l< + i= 1, ..., n a.s. on {< + }.
ProoL Since the let side o2 (6) is either nonnegative or nonpositive,

(ii) in Lemma 1 or a local martincale E2[[Z.dB up to can not

happen a.s. on {< + }. This implies that the lt side o (6) has a finite
limit as t a.s. on {< + }. Therefore, using the equi-sign property
o {r}, we have Lemma 2.

Lemma 3. As t , JH(Z(t)-Z(t)) tends to + a.s. on

{< +} or .s. on {< +} ccording to g(O+)= + or g(O+)= .
ProoL From (5), Lemma 2 and the act" >d o.r any i an , we

observe that the integrands in the right side o (8) are bounded on [0, )
a.s. on {< + }. Hence we see that the let side o (8) has a finite limit
as t a.s. on {< +}. In aet this limit is zero, because the let side
o (8) converges to zero, as t tends to. along when <+. This, toge-
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ther with (2) Lemma 2, and the equi-sign property of {’}, implies the
assertion of the lemma.

Proof of Theorem. Witho.ut loss of generality we may assume g(0+)

+ c. From (3), (7) and the equi-sign property o {’}, we have
( 9 ) ,,JH(Z(t)--Z(t)),’JH(z--zO+M(t)+const. t
for 0=<t<r with a local martingale M(t) up to r. Applying Lemma 1, we
observe that the right side of (9) does not tend to +c as t J’ r a.s. on
{r<+c}. But this contradicts the conclusion of Lemma 3. Therefore
P(r< + oo)=0.
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