78. On the Number of Prime Factors of Integers in Short Intervals

By Gosuke Yamano
Kanazawa Institute of Technology
(Communicated by Shokichi Iranaga, m. J. A., Oct. 14, 1985)

1. Introduction. Let $3 \leqslant n<m$ be integers. Let $\omega(m)$ denote the number of distinct prime factors of m. Let $1<b(n) \leqslant n$ be a sequence of positive integers. Let $A\{m ; \cdots\}$ denote the number of positive integers m which satisfy some conditions. Throughout this paper p, p_{1}, p_{2}, \ldots stand for prime numbers and c_{1}, c_{2}, \cdots stand for positive constants. We put

$$
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-(1 / 2) y^{2}} d y
$$

Then the following result was obtained by Babu [1].
Let $1 \leqslant a(n) \leqslant(\log \log n)^{1 / 2}$ be a sequence of real numbers tending to infinity. Then
(1) $(1 / b(n)) A\{m ; n<m \leqslant n+b(n), \omega(m)-\log \log m<x \sqrt{\log \log m}\} \longrightarrow \Phi(x)$ as $n \rightarrow \infty$, provided that $b(n) \geqslant n^{a(n)(\log \log n)^{-1 / 2}}$.

In this note we shall prove the following theorem which shows that the condition for $b(n)$ can be improved.

Theorem. Let $\alpha<\beta$ be real numbers. Let $b(n) \geqslant n^{1 /(\log \log n)}$ be a sequence of positive integers. We put $\mu=\max \{1,|\alpha|,|\beta|\}$ and

$$
\begin{aligned}
A(n, b(n), \alpha, \beta)= & A\{m ; n<m \leqslant n+b(n), \\
& \log \log m+\alpha \sqrt{\log \log m}<\omega(m)<\log \log m+\beta \sqrt{\log \log m}\} .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& \frac{1}{b(n)} A(n, b(n), \alpha, \beta)= \frac{1}{\sqrt{2 \pi}} \int_{\alpha}^{\beta} e^{-(1 / 2) y^{2}} d y+\boldsymbol{O}\left(\frac{\mu^{5}(\log \log \log n)^{1 / 2}}{(\log \log n)^{1 / 4}}\right) \\
&+\boldsymbol{O}\left(\mu \sqrt{\log \log n} e^{-c_{1}(\log \log n)^{2} \log b(n) / \log n}\right)
\end{aligned}
$$

The \boldsymbol{O}-terms are uniform with respect to a sufficiently large n.
This theorem implies that (1) holds if $b(n) \geqslant n^{1 / \log \log n}$, and also gives an answer for the question which was given by P. Erdös and I. Z. Ruzsa (cf. [1]). To prove the theorem we shall use Selberg's sieve method and the arguments of Erdös [3] and Tanaka [5] (cf. [2]).
2. Sieve method. Using Kubilius's lemma (Kubilius [3], lemma 1.4) we obtain the following lemma. This also can be proved directly by Selberg's sieve method.

Lemma. Let $b_{1}(n)$ be a sequence of positive integers tending to infinity. Let $g \leqslant \sqrt{b_{1}(n)}$ be a positive integer and q be an integer with $0 \leqslant q$ $<g$. Let $n_{1}=[(n-q) / g]$ and $n_{2}=\left[\left(n+b_{1}(n)-q\right) / g\right]$, here $[x]$ denotes the largest integer not exceeding x. Let $r_{1} \geqslant 2$ with $\log r_{1} \leqslant c_{2} \log \left(n_{2}-n_{1}\right)$, where
c_{2} is a sufficiently small constant. Let $p_{1}, p_{2}, \cdots, p_{h}$ be prime numbers such that $p_{j} \nmid g$ and $p_{j} \leqslant r_{1}$ for each $j=1,2, \cdots, h$. We put $F\left(n, b_{1}(n), q, g\right.$; $\left.p_{1}, p_{2}, \cdots, p_{n}\right)=A\left\{m ; n<m \leqslant n+b_{1}(n), m \equiv q(\bmod g), m \neq 0\left(\bmod p_{j}\right) j=1\right.$, $2, \cdots, h\}$. Then we have

$$
F\left(n, b_{1}(n), q, g ; p_{1}, p_{2}, \cdots, p_{h}\right)=\frac{b_{1}(n)}{g} \prod_{j=1}^{h}\left(1-\frac{1}{p_{j}}\right)\left\{1+\boldsymbol{O}\left(e^{-c_{8}\left(\log b_{1}(n) / \log r_{1}\right)}\right)\right\} .
$$

The \boldsymbol{O}-term is uniform with respect to a sufficiently large n and $g \leqslant \sqrt{b_{1}(n)}$.
3. Proof of Theorem. We denote by $P=P(n)$ a set of all prime numbers p which satisfy an inequality

$$
\log n<p<n^{1 /\left(8(\log \log n)^{2}\right)}
$$

Let $\omega^{\prime}(m)$ be the number of distinct primes in P which are divisors of m. Let $g(n)$ be a sequence of real numbers tending to infinity. Then we have

$$
\begin{equation*}
A\left\{m ; n<m \leqslant n+b(n), \omega(m)-\omega^{\prime}(m)>g(n)\right\}=O\left(\frac{b(n) \log \log \log n}{g(n)}\right) \tag{2}
\end{equation*}
$$

Let $y(n)=\sum_{p \in P} 1 / p$. Then $y(n)=\log \log n+O(\log \log \log n)$. Let t be a positive integer with $t<2 \log \log n$. Let $L(t)$ be a set of all positive squarefree integers which have exactly t prime factors belonging to the set P. Then we have

$$
\begin{equation*}
\sum_{l \in L(t)} \frac{1}{l}=\frac{y(n)^{t}}{t!}+O\left(\frac{1}{\log \log n}\right) \tag{3}
\end{equation*}
$$

Let $N(n, b(n), t)=A\left\{m ; n<m \leqslant n+b(n), \omega^{\prime}(m)=t\right\}$, and $N_{1}(n, b(n), t)$ $=A\left\{m ; n<m \leqslant n+b(n), \omega^{\prime}(m)=t, p^{2} \nmid m\right.$ for all $\left.p \in P\right\}$. Then we have

$$
\begin{equation*}
N(n, b(n), t)=N_{1}(n, b(n), t)+O\left(\frac{b(n)}{\log \log n}\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{aligned}
N_{1}(n, & b(n), t) \\
& =\sum_{l \in L(t)} A\{m ; n<m \leqslant n+b(n), l \mid m, p \nmid m / l \text { for all } p \in P\} \\
& =\sum_{l \in L(t)} \sum_{i=1}^{\varphi(l)} F\left(n, b(n), q_{i} l, l^{2} ; p_{1}, p_{2}, \cdots, p_{n}\right)
\end{aligned}
$$

where $\left\{q_{1}, q_{2}, \cdots, q_{\varphi(\lambda)}\right\}$ is a reduced set of residues modulo l, and $p_{i}(1 \leqslant i$ $\leqslant h)$ are all the prime numbers such that $p_{i} \nmid l$ and $p_{i} \in P$.

If $b(n) \geqslant n^{1 / \log \log n}$, then $l^{2}<b(n)^{1 / 2}$ for any $l \in L(t)$. Hence by (3), (4) and the lemma we have

$$
\begin{align*}
N(n, b(n), t)= & b(n) e^{-y(n)} \frac{y(n)^{t}}{t!}+\boldsymbol{O}\left(\frac{b(n)}{\log \log n}\right) \tag{5}\\
& +\boldsymbol{O}\left(b(n) e^{\left.-c_{4}(\log \log n)^{2} \log b(n) / \log n\right) .}\right.
\end{align*}
$$

Let u be a real number such that $t=y(n)+u \sqrt{y(n)}$. Applying Stirling's formula to (5), we have

$$
\begin{align*}
N(n, b(n), t)= & \frac{1}{\sqrt{2 \pi y(n)}} b(n) e^{-(1 / 2) u^{2}}+\boldsymbol{O}\left(\frac{\mu^{4} b(n)}{\log \log n}\right) \tag{6}\\
& +\boldsymbol{O}\left(b(n) e^{-c_{4}(\log \log n)^{2} \log b(n) / \log n}\right)
\end{align*}
$$

Now we put $w=(g(n)+\mu \log \log \log n) / \sqrt{y(n)}$, provided that the function $g(n)$ has the property that w becomes sufficiently small for a large n.

Let $B(n, b(n), \alpha, \beta)=A\left\{m ; n<m \leqslant n+b(n), y(n)+\alpha \sqrt{y(n)}<\omega^{\prime}(m)<y(n)+\right.$ $\beta \sqrt{y(n)}\}$. From (2) we have

$$
\begin{equation*}
A(n, b(n), \alpha, \beta)=B(n, b(n), \alpha+\boldsymbol{O}(w), \beta+\boldsymbol{O}(w))+\boldsymbol{O}\left(\frac{b(n) \log \log \log n}{g(n)}\right) \tag{7}
\end{equation*}
$$

Let $t=t_{0}+1, t_{0}+2, \cdots, t_{0}+s$ be s natural numbers such that

$$
y(n)+\alpha \sqrt{y(n)}<t<y(n)+\beta \sqrt{y(n)} .
$$

Further, we write $t_{0}+i=y(n)+u_{i} \sqrt{y(n)}$. It is obvious that

$$
u_{i+1}-u_{i}=1 / \sqrt{y(n)} \quad \text { and } \quad s=\boldsymbol{O}(\mu \sqrt{\log \log n})
$$

Hence from (6) we have

$$
\begin{align*}
B(n, b(n), \alpha, \beta) & =\sum_{i=1}^{s} N\left(n, b(n), t_{0}+i\right) \tag{8}\\
= & \frac{b(n)}{\sqrt{2 \pi}} \sum_{i=1}^{s}\left(u_{i+1}-u_{i}\right) e^{-(1 / 2) u_{i}^{2}}+\boldsymbol{O}\left(\frac{\mu^{5} b(n)}{\sqrt{\log \log n}}\right) \\
& +\boldsymbol{O}\left(b(n) \mu \sqrt{\log \log n} e^{\left.-c_{5}(\log \log n)^{2} \log b(n) / \log n\right)} .\right.
\end{align*}
$$

Using the mean value theorem in calculus, we have

$$
\sum_{i=1}^{s}\left(u_{i+1}-u_{i}\right) e^{-(1 / 2) u_{i}^{2}}=\int_{\alpha}^{\beta} e^{-(1 / 2) u^{2}} d u+\boldsymbol{O}\left(\frac{\mu^{2}}{\sqrt{y(n)}}\right)
$$

Therefore the proof of theorem is completed by (7), (8) and putting $g(n)$ $=(\log \log n)^{1 / 4}(\log \log \log n)^{1 / 2}$.

References

[1] G. J. Babu: Distribution of the values of ω in short intervals. Acta Math. Acad. Sci. Hung., 40, 135-137 (1982).
[2] Y. Eda and G. Yamano: On the number of prime factors of integers. Sci. Rep. Kanazawa Univ., 14, no. 1, 13-20 (1969).
[3] P. Erdös: Note on the number of prime divisors of integers. J. London Math. Soc., 12, 308-314 (1937).
[4] J. Kubilius: Probabilistic methods in the theory of numbers. Amer. Math. Soc. Translations, vol. 11 (1964).
[5] M. Tanaka: On the number of prime factors of integers. Jap. J. Math., 25, 1-20 (1955).

