78. On the Number of Prime Factors of Integers in Short Intervals

By Gosuke YAMANO Kanazawa Institute of Technology

(Communicated by Shokichi IYANAGA, M. J. A., Oct. 14, 1985)

1. Introduction. Let $3 \le n < m$ be integers. Let $\omega(m)$ denote the number of distinct prime factors of m. Let $1 < b(n) \le n$ be a sequence of positive integers. Let $A\{m; \dots\}$ denote the number of positive integers m which satisfy some conditions. Throughout this paper p, p_1, p_2, \dots stand for prime numbers and c_1, c_2, \dots stand for positive constants. We put

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-(1/2)y^2} dy.$$

Then the following result was obtained by Babu [1].

Let $1 \leq a(n) \leq (\log \log n)^{1/2}$ be a sequence of real numbers tending to infinity. Then

(1) $(1/b(n))A\{m; n \le m \le n+b(n), \omega(m) - \log \log m \le x\sqrt{\log \log m}\} \longrightarrow \Phi(x)$ as $n \to \infty$, provided that $b(n) \ge n^{a(n)(\log \log n)^{-1/2}}$.

In this note we shall prove the following theorem which shows that the condition for b(n) can be improved.

Theorem. Let $\alpha < \beta$ be real numbers. Let $b(n) \ge n^{1/(\log \log n)}$ be a sequence of positive integers. We put $\mu = \max \{1, |\alpha|, |\beta|\}$ and

 $A(n, b(n), \alpha, \beta) = A\{m; n < m \leq n + b(n),$

 $\log \log m + \alpha \sqrt{\log \log m} < \omega(m) < \log \log m + \beta \sqrt{\log \log m} \}.$ Then we have

$$\frac{1}{b(n)}A(n, b(n), \alpha, \beta) = \frac{1}{\sqrt{2\pi}} \int_{\alpha}^{\beta} e^{-(1/2)y^2} dy + O\left(\frac{\mu^5 (\log \log \log n)^{1/2}}{(\log \log n)^{1/4}}\right) \\ + O(\mu \sqrt{\log \log n} e^{-c_1 (\log \log n)^2 \log b(n) / \log n}).$$

The **O**-terms are uniform with respect to a sufficiently large n.

This theorem implies that (1) holds if $b(n) \ge n^{1/\log \log n}$, and also gives an answer for the question which was given by P. Erdös and I. Z. Ruzsa (cf. [1]). To prove the theorem we shall use Selberg's sieve method and the arguments of Erdös [3] and Tanaka [5] (cf. [2]).

2. Sieve method. Using Kubilius's lemma (Kubilius [3], lemma 1.4) we obtain the following lemma. This also can be proved directly by Selberg's sieve method.

Lemma. Let $b_1(n)$ be a sequence of positive integers tending to infinity. Let $g \leq \sqrt{b_1(n)}$ be a positive integer and q be an integer with $0 \leq q$ $\leq g$. Let $n_1 = [(n-q)/g]$ and $n_2 = [(n+b_1(n)-q)/g]$, here [x] denotes the largest integer not exceeding x. Let $r_1 \geq 2$ with $\log r_1 \leq c_2 \log (n_2 - n_1)$, where c_2 is a sufficiently small constant. Let p_1, p_2, \dots, p_h be prime numbers such that $p_j \nmid g$ and $p_j \leqslant r_1$ for each $j=1, 2, \dots, h$. We put $F(n, b_1(n), q, g;$ $p_1, p_2, \dots, p_h) = A\{m; n < m \leqslant n + b_1(n), m \equiv q \pmod{g}, m \equiv 0 \pmod{p_j}, j = 1,$ $2, \dots, h\}$. Then we have

$$F(n, b_1(n), q, g; p_1, p_2, \cdots, p_h) = \frac{b_1(n)}{g} \prod_{j=1}^h \left(1 - \frac{1}{p_j}\right) \{1 + O(e^{-c_3(\log b_1(n)/\log r_1)})\}.$$

The O-term is uniform with respect to a sufficiently large n and $g \leq \sqrt{b_1(n)}$.

3. Proof of Theorem. We denote by P = P(n) a set of all prime numbers p which satisfy an inequality

$$\log n$$

Let $\omega'(m)$ be the number of distinct primes in P which are divisors of m. Let g(n) be a sequence of real numbers tending to infinity. Then we have

(2)
$$A\{m; n < m \leq n+b(n), \omega(m)-\omega'(m) > g(n)\} = O\left(\frac{b(n)\log\log\log n}{g(n)}\right)$$

Let $y(n) = \sum_{p \in P} 1/p$. Then $y(n) = \log \log n + O(\log \log \log n)$. Let t be a positive integer with $t < 2 \log \log n$. Let L(t) be a set of all positive square-free integers which have exactly t prime factors belonging to the set P. Then we have

(3)
$$\sum_{l \in L(l)} \frac{1}{l} = \frac{y(n)^{l}}{t!} + O\left(\frac{1}{\log \log n}\right)$$

Let $N(n, b(n), t) = A\{m; n < m \le n + b(n), \omega'(m) = t\}$, and $N_1(n, b(n), t) = A\{m; n < m \le n + b(n), \omega'(m) = t, p^2 \nmid m \text{ for all } p \in P\}$. Then we have

(4)
$$N(n, b(n), t) = N_1(n, b(n), t) + O\left(\frac{b(n)}{\log \log n}\right)$$

and

$$N_{1}(n, b(n), t) = \sum_{l \in L(t)} A\{m; n < m \le n + b(n), l \mid m, p \nmid m/l \text{ for all } p \in P\}$$
$$= \sum_{l \in L(t)} \sum_{i=1}^{\varphi(l)} F(n, b(n), q_{i}l, l^{2}; p_{1}, p_{2}, \dots, p_{h})$$

where $\{q_1, q_2, \dots, q_{\varphi(l)}\}$ is a reduced set of residues modulo l, and p_i $(1 \le i \le h)$ are all the prime numbers such that $p_i \nmid l$ and $p_i \in P$.

If $b(n) \ge n^{1/\log \log n}$, then $l^2 < b(n)^{1/2}$ for any $l \in L(t)$. Hence by (3), (4) and the lemma we have

(5)
$$N(n, b(n), t) = b(n)e^{-y(n)}\frac{y(n)^{t}}{t!} + O\left(\frac{b(n)}{\log\log n}\right) + O(b(n)e^{-c_{4}(\log\log n)^{2}\log b(n)/\log n}).$$

Let u be a real number such that $t=y(n)+u\sqrt{y(n)}$. Applying Stirling's formula to (5), we have

(6)
$$N(n, b(n), t) = \frac{1}{\sqrt{2\pi y(n)}} b(n) e^{-(1/2)u^2} + O\left(\frac{\mu^4 b(n)}{\log \log n}\right) + O(b(n) e^{-c_4(\log \log n)^2 \log b(n)/\log n}).$$

Now we put $w = (g(n) + \mu \log \log \log n) / \sqrt{y(n)}$, provided that the function g(n) has the property that w becomes sufficiently small for a large n.

No. 8]

Let $B(n, b(n), \alpha, \beta) = A\{m; n < m \le n + b(n), y(n) + \alpha \sqrt{y(n)} < \omega'(m) < y(n) + \beta \sqrt{y(n)}\}$. From (2) we have (7) $A(n, b(n), \alpha, \beta) = B(n, b(n), \alpha + O(w), \beta + O(w)) + O\left(\frac{b(n) \log \log \log n}{g(n)}\right)$. Let $t = t_0 + 1, t_0 + 2, \dots, t_0 + s$ be s natural numbers such that $y(n) + \alpha \sqrt{y(n)} < t < y(n) + \beta \sqrt{y(n)}$. Further, we write $t_0 + i = y(n) + u_i \sqrt{y(n)}$. It is obvious that $u_{i+1} - u_i = 1/\sqrt{y(n)}$ and $s = O(\mu\sqrt{\log \log n})$.

Hence from (6) we have

(8)
$$B(n, b(n), \alpha, \beta) = \sum_{i=1}^{s} N(n, b(n), t_0 + i)$$
$$= \frac{b(n)}{\sqrt{2\pi}} \sum_{i=1}^{s} (u_{i+1} - u_i) e^{-(1/2)u_i^2} + O\left(\frac{\mu^5 b(n)}{\sqrt{\log \log n}}\right)$$

 $+ O(b(n)\mu\sqrt{\log\log n} e^{-c_5(\log\log n)^2 \log b(n)/\log n}).$

Using the mean value theorem in calculus, we have

$$\sum_{i=1}^{s} (u_{i+1} - u_i) e^{-(1/2)u_4^2} = \int_{\alpha}^{\beta} e^{-(1/2)u^2} du + O\left(\frac{\mu^2}{\sqrt{y(n)}}\right)$$

Therefore the proof of theorem is completed by (7), (8) and putting $g(n) = (\log \log n)^{1/4} (\log \log \log n)^{1/2}$.

References

- G. J. Babu: Distribution of the values of ω in short intervals. Acta Math. Acad. Sci. Hung., 40, 135-137 (1982).
- Y. Eda and G. Yamano: On the number of prime factors of integers. Sci. Rep. Kanazawa Univ., 14, no. 1, 13-20 (1969).
- [3] P. Erdös: Note on the number of prime divisors of integers. J. London Math. Soc., 12, 308-314 (1937).
- [4] J. Kubilius: Probabilistic methods in the theory of numbers. Amer. Math. Soc. Translations, vol. 11 (1964).
- [5] M. Tanaka: On the number of prime factors of integers. Jap. J. Math., 25, 1–20 (1955).