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8 Propagation of Wave Front Sets of Solutions of
the Cauchy Problem for a Hyperbolic

System in Gevrey Classes

By Yoshinori MORIMOTO*) and Kazuo TANIGUCHI**)

(Communicated by KSsaku YOSIDA, M. $.A., Feb. 12, 1985)

Introduction and main theorem. Consider a hyperbolic system

1 .=D-- ".. +(b(t, X, D))
0 2g(t, X, D)

on [0, T] R
with real symbols 2(t, x, ) in G()([0, T];S(,)) and symbols b(t,x, ) in
G(’)([0, T] ;.S;(,)) (0al/). Here, for :>1 we denote by G(’)([0, T] S())
a class of symbols p(t, x, ) of pseudo-differential operators satisfying

for constants C .and M. In the recent paper [9] the second author has
constructed the fundamental solution of (1) assuming the constant multi-
plicities of characteristic roots of

_
and investigated the propagation of

wave front sets for the solution of the Cauchy problem of ."
(2) _CU(t)=0 (O<t<To), U(0)=G.
In the present paper we study the propagation of wave front sets in
Gevrey classes for the solution U(t) of (2) without assuming the constant
multiplicity and get a similar result to the one for the C case obtained by
Kumano-go and the second author [4].

Let t>0 and let V be a conic set in T*(R). Then, we denote by F:(t, V)
(=0, 1,...) the set of end points (at t) of all t-admissible trajectories o,
at most, step issuing from the -conic neighborhood V,----{(x, ) [x-y]_,
I/ll-/[[l, (Y, ) e V} of V (concerning the characteristic roots (t, x, ),
]= 1,. ., cf. [2]) and set

F,(t, V)--the closure of [.)7=0 F(t, V),(3)
/’(t, v)= (>0/(t, v).

We also denote by ’’., a class of ultradistributions defined in [3] (see also
[11]).

Theorem. Let

_
be a hyperbolic operator of the form (1) with

2(t, x, ) e G(’)([0, T] Sz(,)) and b(t, x, ) e G()([0, T] So(,)) for O<a<l/x.
Consider the Cauchy problem (2). Then, there exists a unique solution
U(t) in _([0, To] .q)’) (0< To =< T) for any G e .,,(’ and it satisfies
( 4 ) WFo(,,(U(t))F(t, WF(,)(G))
for any satisfying l/a.
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((’ defined asHere, or >_, WFe(,)(u) is a wave front set of u e.
follows"

((’)’ Then, the point (Xo o)Definition (cf [11]). Let ue and .
in T*(R) ds not belong to WFe(,,)(u) if there exists a symbol a(x, ) in
S() with a(xo, 8o)0 (81) such that f(x)=a(X,D)u satisfies

O;f(x)]CM-" for all x e R.
We remark that this definition is equivalent to the definition given by

HSrmander [1]. We also remark that the first author studies the best
possibility of (4) in [6].

1. Hyperbolic differential operators. Consider the Cauchy problem
(1.1) Lu=O (OtTo), Oiu(O)=g (]=0,1,...,m--1)
or a hyperbolic operator
(1.2) L=D+=o .-a,(t, x)D on [0, T] R
with coefficients a,,(t,x) in a Gevrey class y(’)([0, T]xR), that is, they
satisfy

for (t, x) e [0, T] R.
In [9] we have shown that the problem (1.1) is reduced to the equivalent
Cauchy problem (2)with a=(r-q)/r under the condition that there exist
regularly hyperbolic’operators L,L,..., Lr with coefficients in (’)([0, T]
R) such that L has a form

m-q(1.3) L LL. Lr+=o .-q- a,,(t, x)DD
with a,(t, x) in Y()([0, T] XR) and lgqr (see also [5]). So, using
Theorem we get
(1.4) WF(,)(u(t))cF(t,-WFe(,,)(g)) or
In the case of q=l, that is, in the case of assuming no conditions on lower
order terms, Wakabayashi [12] has also investigated the propagation
wave front sets or solutions of (1.1) in the Gevrey class o order x(x
r/(r--1)) by constructing a parametrix of L and introducing "flows" K
in T*(R R) emanating from a point z in T*(R XR). His result (for the
operator (1.3)) is the same as our estimate (1.4), since we have

(K (t to})=(to, {(xo, eo) e>0})
for to0 and Zo e z-(((xo, o)}) (t=0} p-(0), where p=p(t, x, , ) is the

* projection (cf.principal symbol of L and T*(RxR)T (R) is a
Theorem 4.4 in [13]).

As another condition under which the problem (1.1) can be reduced to
the problem (2), we consider an operator L of the form
(1.5) L L,LL,+PL+P,L,+PL+P.
Here, L, ]= 1, 2, 3, are regularly hyperbolic operators of order m (m+m
+m,=m) and P, P, P, and P are differential operators of order, at most,
m--m-l, m-m-l, m--m,--I and m-l, respectively, with coefficients
in ()([0, T]R). We note that if P=P=P,=O then (1.5) is the form
(.3).

Proposition 1. Let L be a hyperbolic operator of the form (1.5).
Then, the Cauchy problem (1.1) can be reduced to the equivalent Cauchy
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problem (2) for an operator

_
of the form (1) with a satisfying the follow-

ing"
i) a 0 if order P1 m-ml 2, order P2 m--m2-3,

order P m-m--2 and order P<=m--3,
ii) a---l/3 if orderPjm-mj--2 (]=1,2,3) and orderP4m--2,

iii) a=l/2 if order Pm-m--I (]=1,2,3) and order Pm--2,
iv) a=2/3 otherwise.
We remark that the case i) is treated in [8]. As shown in this propo-

sition it seems to be very difficult to find the conditions on lower order
terms of a hyperbolic operator (1.2)with smooth characteristic roots under
which the problem (1.1) is reduced to an equivalent problem (2) of a hyper-
bolic system. (1) with a given a (1).

2. Proof o Theorem. Let (t, s x, ) be the phase function cor-
responding to 2(t, x, ) (]=1, 2,..., 1). Then, as in the C case ([4], pp.
185-186) the undamental solution E(t, s) of (1) is constructed in the form

(2.1) E(t, s)=X I, (t, s)+ I,,,(t, t,)
j= ,.-.,/

(k=l,...+l)

X W,(t, tO... W+,,+(t, s)dt.., dr, (t0= t)
for OtTo

for some To ( T), where I,(t, s) is a matrix of Fourier integral operators
with phase function (t, s;x, ) and with symbol 1 ((], ]) element.) or 0
(others), and W,(t, s) is the one with symbol w(t, s;z, ) satisfying

T

Since we assume a<l, the first part of Theorem is verified easily by the
results in [11]. For the proof of the inclusion (4) we employ

Proposition 2. Let V be a closed conic set in T*(R) and let F,(t, V)
be a set defined in (3) for >0. Let a(x, ) and b(x, ) be symbols in S(.)
satisfying

[supp b V,/z,(2.2)
[Ix-yl/2 or 1/-/111/2

if (x, ) e supp a and (y, ) e F,(t, V).
Then, for the fundamental solution E(t, s) of (2.1) the operator a(X,D)
E(t,O)b(X,D) is a pseudo-differential operator with symbol p(t,x,)

satisfying for some constants M and0
I3P(t, x, )IgC.,M- e

with constants C.,r independent of ft.
Then, we can get (4) as shown in [10]. So, the key point of the proof

of (4)is to obtain Proposition 2, which is proved in Morimoto-Taniguchi
[7] by the method of the oscillatory integrals.
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