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The Regularity of Discrete Models of the
Boltzmann Equation
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The aim of this note is to single out a category of the discrete
Boltzmann equations as the regular models of the Boltzmann equation. It
is shown that there exist regular models with n moduli of velocities for an
arbitrary integer n_> 2.

1. Let M={v, ...,v} be the set of velocities, i.e., the constant
vectors in R. We assume that the linear span of M coincides with R.
The model M is essentially three-dimensional in this sense. First of all,
we introduce the notion of the collision. Let us denote by the set of all
unordered pairs of distinct velocities. We may set

Y={(vo v);
Let c, fl e X. Then the ordered pair of a and fl is called a collision, if

(i)
(ii) the momentum o a equals the momentum o
(iii) the energy o cr equals the energy o

It is usual to denote the ordered pair by cr-fl. We call cr and fl the initial
and the final states o the collision, respectively. It is assumed in the
ollo.wing that there exists at least one collision. Now let C be the se of
all collisions. We obtain a partition of C by the equivalence relation given
below.

We introduce the group o transformations acting in M. We se
G (T; T e (C)(R3), TM=U).

Here, (C)(R) denotes the group of orthogonal transformations. G induces
naturally a group of isometric transformations on M, which we denote by
G. It is easily seen that G is determined uniquely as the maximal set of
isometric transformations on M. We define that a-+fl and cr’-fl’ are
equivalent if these collisions are obtained from each other by performing
a transformation which belongs to G or by interchanging the initial and
the final states or by combining these two operations. The constants A,
appearing in the definition of the collision term may be identified with a
"step function" subordinate to the partition of C, which is induced from
the equivalence relation given above. (See [3] for details.) Thus, if C con-
sists of m equivalence classes, we have m. arbitrary constants in defining
the collision term. The general form of the discrete Boltzmann equation
is given by
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( 1 3F +v gxF= 1 {AFF--AjFFj}, i= 1, 2, ..., d.
at - ,,

Here Af is set to be zero i the ormal expression (v, v)--.(v, v) does not
correspond to a collision.

We say that (1) is regular if the following properties hold"
1) The equation (1) is irreducible in the sense that the system can

not be decomposed into two decoupled subsystems.
2) The collision term on the right side of (1) is invariant under the

associated transformation group G.
3) The stability condition for Maxwellians is satisfied. (We refer

the reader to [3] for the precise statement of this condition.)
Note that 2) is always satisfied when A is chosen according to the

procedure described above. The other conditions 1) and 3) can be verified
without the knowledge of A. Hence we may also say that the discrete
model M is regular by abuse of the terminology.

2. Our results are summarized in the ollowing two theorems. We
denote by (G)the set of regular models with the prescribed transfor-
mation group G. For the notations such as T, T, T, 0, I, see, for
example, [1].

Theorem 1o Let n_2 be an arbitrary integer and let G be either T
or Oh. Then (G) contains a model with n moduli of velocities.

Theorem 2. Let n_2 be an arbitrary integer and let G be one of T,
T and I. Then (G) contains a model with n moduli of velocities.

In order to prove Theorem 2, we need the computer. See [4] or
details. On the contrary, Theorem 1 can be proved without using the
computer.

Remark 1o For concrete models known up to date, the dimension of
the space of summational invariants is five in the case o.f G= T, 0, while
the dimension of the same space turns out to be eight in the case of G--T,
T, I. See [2], [3], [4]. It is not known whether these facts hold in general
or not.

Remark 2. We obtain a 13-velocity model by omitting a vertex of the
cube in the 14-velocity model studied in [3]. This model is also regular
and we have G=C.

3. We give a sketch o the proof. Details are published elsewhere.
First we consider the case where G=O. We define the 6, 12, 8, 6, 24-
velocity models as follows. Let

U(1)--(1, O, 0), U()--(O, 1, 0), U3(1) (O, O, 1), u()=(--1, O, 0),
u()=(O, --1, 0), U6(1)’(O, O, --1); u)=(1, O, 1), u()=(O, 1, 1),
u) (-- 1, O, 1), u(")= (0, 1, 1), u()= (-- 1, O, 1), u(")= (0, 1, 1),
u(z) (1, O, 1), u(s") (0, 1, 1), u) (1, 1, 0), /ulO’() (--1, 1, 0),
u() (--1, 1, 0), () (1, 1, 0); u)=(1, 1, 1), u()=(-1, 1, 1),Ii b12

u() (-- 1, 1, 1) u() (1, 1, 1), u) (-- 1, 1, 1) u() (1, 1, 1),
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u() (1, 1, --1), us()= (--1, 1, --1); u*)= (2, O, 0), u(*)= (0, 2, 0),
u( (0, O, 2), u( (-- 2, O, 0), u( (0, 2, 0), u( (0, O, 2)
u)=(2, 1, 1), u)=(2--1, 1), u)=(2, --1, --1), u)=(2, 1, --1),
u) (-- 2, 1, 1), u)= (-- 2, 1, 1), u) (-- 2, 1, 1),, (-- 1, 2, 1)u (--2, 1,1) u=(1,2,1), ,(=(1,2, 1),

’ ( 1, 2, 1), ’ (1, 2, 1)’=(--1,2,1), ’ (--1, 2, 1), 15

,)=(1, 1, 2), ,) 1, 1, 2), u) (-1, 1, 2),18 19

u) (1, 1,2) u)=(1,1, 2)0’) (1, 1, 2), u) (- 1, 1, 2), ,
u) (- 1, 1, 2).

We set M={u); li<d(n)} for n=l, ..., 5, where d(1)=6, d(2)=12, d(3)
=8, d(4)=6, d(5)=24. For n6, we define M={u); lid(n)}, where
u() 2u-)(li<d(n))andd(n) d(n-4) Let N MU...M. Then
the dimension of the space of summational invariants is 5 for the model
N, if n2. This can be proved by induction. The regularity of N for
n2 is shown by using the argument of Cercignani. The case where G=T
is proved similarly. The modification needed is to replace only M by the
4-velocity model which corresponds to the vertices of a regular tetra-
hedron. The proof of Theorem 2 will be given in the forthcoming paper
[4].
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