71. The Regularity of Discrete Models of the Boltzmann Equation

By Yasushi Shizuta and Shuichi Kawashima
Department of Mathematics, Nara Women's University
(Communicated by Kôsaku Yosida, m. J. A., Oct. 14, 1985)

The aim of this note is to single out a category of the discrete Boltzmann equations as the regular models of the Boltzmann equation. It is shown that there exist regular models with n moduli of velocities for an arbitrary integer $n \geq 2$.

1. Let $M=\left\{v_{1}, \cdots, v_{d}\right\}$ be the set of velocities, i.e., the constant vectors in \boldsymbol{R}^{3}. We assume that the linear span of M coincides with \boldsymbol{R}^{3}. The model M is essentially three-dimensional in this sense. First of all, we introduce the notion of the collision. Let us denote by Σ the set of all unordered pairs of distinct velocities. We may set

$$
\Sigma=\left\{\left(v_{i}, v_{j}\right) ; 1 \leq i<j \leq d\right\}
$$

Let $\alpha, \beta \in \Sigma$. Then the ordered pair of α and β is called a collision, if
(i) $\alpha \neq \beta$,
(ii) the momentum of α equals the momentum of β,
(iii) the energy of α equals the energy of β.

It is usual to denote the ordered pair by $\alpha \rightarrow \beta$. We call α and β the initial and the final states of the collision, respectively. It is assumed in the following that there exists at least one collision. Now let \mathcal{C} be the set of all collisions. We obtain a partition of \mathcal{C} by the equivalence relation given below.

We introduce the group of transformations acting in M. We set

$$
\tilde{G}=\left\{T ; T \in \mathcal{O}\left(R^{3}\right), T M=M\right\} .
$$

Here, $\mathcal{O}\left(\boldsymbol{R}^{3}\right)$ denotes the group of orthogonal transformations. \tilde{G} induces naturally a group of isometric transformations on M, which we denote by G. It is easily seen that G is determined uniquely as the maximal set of isometric transformations on M. We define that $\alpha \rightarrow \beta$ and $\alpha^{\prime} \rightarrow \beta^{\prime}$ are equivalent if these collisions are obtained from each other by performing a transformation which belongs to G or by interchanging the initial and the final states or by combining these two operations. The constants $A_{i j}^{k l}$ appearing in the definition of the collision term may be identified with a "step function" subordinate to the partition of \mathcal{C}, which is induced from the equivalence relation given above. (See [3] for details.) Thus, if \mathcal{C} consists of m equivalence classes, we have m arbitrary constants in defining the collision term. The general form of the discrete Boltzmann equation is given by

$$
\begin{equation*}
\frac{\partial F_{i}}{\partial t}+v_{i} \cdot \nabla_{x} F_{i}=\frac{1}{2} \sum_{j, k, l}\left\{A_{k l}^{i j} F_{k} F_{l}-A_{i j}^{k l} F_{i} F_{j}\right\}, \quad i=1,2, \cdots, d \tag{1}
\end{equation*}
$$

Here $A_{i j}^{k l}$ is set to be zero if the formal expression $\left(v_{i}, v_{j}\right) \rightarrow\left(v_{k}, v_{l}\right)$ does not correspond to a collision.

We say that (1) is regular if the following properties hold:
1°) The equation (1) is irreducible in the sense that the system can not be decomposed into two decoupled subsystems.
2°) The collision term on the right side of (1) is invariant under the associated transformation group G.
3°) The stability condition for Maxwellians is satisfied. (We refer the reader to [3] for the precise statement of this condition.)

Note that 2°) is always satisfied when $A_{i j}^{k l}$ is chosen according to the procedure described above. The other conditions 1°) and 3°) can be verified without the knowledge of $A_{i j}^{k l}$. Hence we may also say that the discrete model M is regular by abuse of the terminology.
2. Our results are summarized in the following two theorems. We denote by $\mathcal{R}(G)$ the set of regular models with the prescribed transformation group G. For the notations such as $T, T_{d}, T_{h}, O_{h}, I_{h}$, see, for example, [1].

Theorem 1. Let $\mathrm{n} \geq 2$ be an arbitrary integer and let G be either T_{d} or O_{h}. Then $\mathcal{R}(G)$ contains a model with n moduli of velocities.

Theorem 2. Let $n \geq 2$ be an arbitrary integer and let G be one of T, T_{h} and I_{h}. Then $\mathcal{R}(G)$ contains a model with n moduli of velocities.

In order to prove Theorem 2, we need the computer. See [4] for details. On the contrary, Theorem 1 can be proved without using the computer.

Remark 1. For concrete models known up to date, the dimension of the space of summational invariants is five in the case of $G=T_{d}, O_{h}$, while the dimension of the same space turns out to be eight in the case of $G=T$, T_{h}, I_{h}. See [2], [3], [4]. It is not known whether these facts hold in general or not.

Remark 2. We obtain a 13 -velocity model by omitting a vertex of the cube in the 14 -velocity model studied in [3]. This model is also regular and we have $G=C_{3}$.
3. We give a sketch of the proof. Details are published elsewhere. First we consider the case where $G=O_{h}$. We define the $6,12,8,6,24-$ velocity models as follows. Let

$$
\begin{aligned}
& u_{1}^{(1)}=(1,0,0), u_{2}^{(1)}=(0,1,0), u_{3}^{(1)}=(0,0,1), u_{4}^{(1)}=(-1,0,0), \\
& u_{5}^{(1)}=(0,-1,0), u_{6}^{(1)}=(0,0,-1) ; u_{1}^{(2)}=(1,0,1), u_{2}^{(2)}=(0,1,1), \\
& u_{3}^{(2)}=(-1,0,1), u_{4}^{(2)}=(0,-1,1), u_{5}^{(2)}=(-1,0,-1), u_{6}^{(2)}=(0,-1,-1), \\
& u_{7}^{(2)}=(1,0,-1), u_{8}^{(2)}=(0,1,-1), u_{9}^{(2)}=(1,1,0), u_{10}^{(2)}=(-1,1,0), \\
& u_{12}^{(2)}=(-1,-1,0), u_{12}^{(2)}=(1,-1,0) ; u_{4}^{(3)}=(1,1,1), u_{2}^{(3)}=(-1,1,1), \\
& u_{3}^{(3)}=(-1,-1,1), u_{4}^{(3)}=(1,-1,1), u_{5}^{(3)}=(-1,-1,-1), u_{6}^{(3)}=(1,-1,-1),
\end{aligned}
$$

$$
\begin{aligned}
& u_{7}^{(3)}=(1,1,-1), u_{8}^{(3)}=(-1,1,-1) ; u_{1}^{(4)}=(2,0,0), u_{2}^{(4)}=(0,2,0), \\
& u_{3}^{(4)}=(0,0,2), u_{4}^{(4)}=(-2,0,0), u_{5}^{(4)}=(0,-2,0), u_{8}^{(4)}=(0,0,-2) ; \\
& u_{1}^{(5)}=(2,1,1), u_{2}^{(5)}=(2-1,1), u_{3}^{(5)}=(2,-1,-1), u_{4}^{(5)}=(2,1,-1), \\
& u_{5}^{(5)}=(-2,-1,-1), u_{8}^{(5)}=(-2,1,-1), u_{7}^{(5)}=(-2,1,1), \\
& u_{8}^{(5)}=(-2,-1,1), u_{9}^{(5)}=(1,2,1), u_{10}^{(5)}=(1,2,-1), u_{11}^{(5)}=(-1,2,-1), \\
& u_{12}^{(5)}=(-1,2,1), u_{13}^{(5)}=(-1,-2,-1), u_{14}^{(5)}=(-1,-2,1), u_{15}^{(5)}=(1,-2,1), \\
& u_{18}^{(5)}=(1,-2,-1), u_{17}^{(5)}=(1,1,2), u_{18}^{(5)}=(-1,1,2), u_{19}^{(5)}=(-1,-1,2), \\
& u_{20}^{(5)}=(1,-1,2), u_{21}^{(5)}=(-1,-1,-2), u_{22}^{(5)}=(1,-1,2), u_{23}^{(5)}=(1,1,-2), \\
& u_{24}^{(5)}=(-1,1,-2) .
\end{aligned}
$$

We set $M_{n}=\left\{u_{i}^{(n)} ; 1 \leq i \leq d(n)\right\}$ for $n=1, \cdots, 5$, where $d(1)=6, d(2)=12, d(3)$ $=8, d(4)=6, d(5)=24$. For $n \geq 6$, we define $M_{n}=\left\{u_{i}^{(n)} ; 1 \leq i \leq d(n)\right\}$, where $u_{i}^{(n)}=2 u_{i}^{(n-4)}(1 \leq i \leq d(n))$ and $d(n)=d(n-4)$. Let $N_{n}=M_{1} \cup \cdots \cup M_{n}$. Then the dimension of the space of summational invariants is 5 for the model N_{n}, if $n \geq 2$. This can be proved by induction. The regularity of N_{n} for $n \geq 2$ is shown by using the argument of Cercignani. The case where $G=T_{d}$ is proved similarly. The modification needed is to replace only M_{3} by the 4 -velocity model which corresponds to the vertices of a regular tetrahedron. The proof of Theorem 2 will be given in the forthcoming paper [4].

References

[1] F. A. Cotton: Chemical Applications of Group Theory. 2nd edition, John Wiley \& Sons (1970).
[2] S. Kawashima, A. Watanabe, M. Maeji and Y. Shizuta: On Cabannes' 32-velocity model of the Boltzmann equation (to appear).
[3] Y. Shizuta and S. Kawashima: Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation. Hokkaido Math. J., 14, 249-275 (1985).
[4] Y. Shizuta, M. Maeji, A. Watanabe and S. Kawashima: Regularity of the 90velocity model of the Boltzmann equation (in preparation).

