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1. Introduction. We are interested in ‘“wild” perturbations in the
sense of J. Rauch and M. Taylor [6], on eigenvalue problems for the
Laplacian. We show the upper semicontinuity of each k-th eigenvalue
of the minus Laplacian with respect to a domain perturbation belonging
to a certain class. This class contains a perturbation argued by the author
[5]. Hereafter we describe all statements only in an abstract fashion.

Let X and V. be real, separable and infinitely dimensional Hilbert
spaces with X DO V,. We assume that the injection V,— X is compact.
We denote by | | and (, ) the norm and inner product on X, respectively.
Here ¢ means the value zero or the values of a sequence decreasing to
zero. Let a.: V. XV,—R be a symmetric continuous bilinear form such
that a.(v)=c.||v|? for all v e V., where a,(v)=a.(v, v) and ¢, is a positive
constant. We denote by H, the closure of V, in X and denote by P, the
orthogonal projection from X onto H,. We set I={zx e X| |z|=1}. We
define a positive selfadjoint operator A4,: D(A,)—H, by a.(u, v)=(4.u, v)
for all ue D(A,) and v e V,, where D(A,)={u e V,.|?¢>0 such that |a,(u,v)|
<c|v| for all veV,}. We consider the equation: A,u,=gu., g R and
u. € 2. Let ™ be the k-th eigenvalue of A, counting with its multiplicity ;
0=pP<p®P< -+ and pP—oco0 as k—>co. We have

= inf a.(x)

( 1 ) VeNZox
1= sup inf a.(x) k=2

e AR e
(cf. R. Courant and D. Hilbert [4]). Ife=0 then we drop from V,, H,, 4.,
P, and so on. Next we describe our result.

Theorem 1. If
(2) s-lim 1+44,)'P,=(1+14)"'P

&0

for a certain 2>0. Then we have limsup,_, £ < u® for each ke N.

Remark 2. Rauch and Taylor [6] discussed in detail various concrete
domain perturbations for the Laplacian, which assure (2), although the
domain perturbation of [5] is not treated by [6]; theorem 4.1 of L.
Boccardo and P. Marcellini [3] also describes the asymptotic properties
of eigenvalues of the Laplacian (cf. theorem 3.71 of H. Attouch [1]), but
we can not apply this theorem to the perturbation of [5]. However, the
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same method as in [5] shows that the perturbation of [5] fills the assump-
tion (2).

2. Proof of Theorem 1. Using a monotone theory, more specifically,
the theory of subdifferentials (cf. H. Brezis [2]) and the Borsuk-Ulam
theorem we prove theorem 1. We define a convex lower semicontinuous
function ¢*: X—[0, o] by () ¢*(®)=0a.(x)/2, x e V., (ii) ¢*(x)=00, x € X\V..
Let 9¢° be the subdifferential of ¢°. Then we have (iii) dp*(x)=A.x+H{,
x € D(0gp*), (iv) 1+420¢°)'=1+24,)"'P,, 2>0, where D(@¢)=D(A,) and H
is the orthogonal complement of H,. We write Ji=(1+23¢*)"'. Next we
convert (1) to a min-max form. For a linear subspace M of X set g (M)
={F =F 02|F’ isa k dimensional linear subspace of M} and g®(M)
=U{g™@)m=k}. If M=X we write g® and g instead of g*(X) and
9% (X), respectively. Then we have g =inf{supa.(x)|g®(V.)>F}
=inf {sup a.(®)|g®(V.) o F}. Thus we have the lemma below.

Lemma 3. p®/2=inf {sup ¢*(®)|g® > F} for each k.

We have the following lemma.

Lemma 4. We assume (2). Then, for any F e g®, we have e, and
F.eg®, 0<e<ep, such that
(3) limsup sup ¢*(x)< sup o).

&—0 F¢dx
Theorem 1 follows from lemmas 3, 4. Actually, by lemma 3 we have

F,eg® such that p®/2=lim,.. sup{e(@)|F,>x}. Thus we obtain px®/2
<sup {g*@)|F,,. 3 2}<sup {p@)|F, 2 x}+n?!, 0<e<e, with g o F,,, ¢, ] 0
by lemmas 3, 4. Therefore theorem 1 is proved.

To see lemma 4 it suffices to prove the next lemma because of the
Borsuk-Ulam theorem : If B is a bounded open symmetric neighborhood
of 0 in R™ and T is an odd, continuous map from 4B into a proper sub-
space of R™ then there is x € 9B such that Tx=0.

Lemma 5. We assume (2). Then, for any F e g¥, there is a sequence
of odd, continuous maps T, : F—23 satisfying (8) with F.=T.F.

To construct 7', we recall properties of the Yosida approximation ¢
of ¢°: (v) ¢ is of class C' on X and (p))'=2"'(1—J%), 2>0 (we write A}
=(¢3)’), (vi) A% is Lipschitz continuous with constant 217', (vii) ¢i(x)
=2 Az /24 ¢*(Jx) <o (x) for all x € X, (viii) P,=s-lim, /5.

Proposition 6. ¢*Ji—¢J, uniformly on F as ¢—0.

Proof. Since ¢*(0)=0, we have ¢{(0)=0. By (v) and (vii) we obtain
(4) go‘J;x:j:(Aj(tac), ©)dt— 2| A2
The sequence {(Ai(tx), )}, is uniformly bounded on (0, 1) by (vi). The
pointwise convergence of ¢°J¢ follows from (2), (v) and the Lebesgue con-
vergence theorem. By (vi) {¢*J, is uniformly bounded and equi-contin-
uous on F. Thus the lemma follows from the Ascoli-Arzela theorem.

Since (vii), (viii) and proposition 6 hold, it is natural to set T.x
=|J; x| 'Jx for x e F with sufficiently small 2,, 0<<e<le(%, F'). If this map
T, is actually well defined then T, is odd, continuous; we have
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o'T x<inf|J5y|* sup ¢Sz
Foy F>3z

for all xeF. For (3) with F.=T.F and the well definedness of T, we
need (ix) infr.,|J;x|-»1 as 1—0, (x) infy,,|J5z|—inf,.,|J,x| as e—0 for
each 2>0. Both of (ix) and (x) follow from the next lemma, because J¢
and J; are contractive.

Lemma 7. If U=s-lim U, on X and U, is Lipschitz continuous with
constant c,, where c, is independent of n. Then U, converges to U uni-
formly on any compact set.

Now we have lemma 5 and the proof of theorem 1 is completed.
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