62. A Note on the Mean Value of the Zeta and L-functions. I

By Yoichi Motohashi
Department of Mathematics, College of Science and Technology, Nihon University
(Communicated by Kunihiko Kodaira, m. J. A., Sept. 12, 1985)

1. The aim of the present series of notes is to develop a study on the various mean values of the Riemann zeta- and Dirichlet L-functions; here, to begin with, we investigate the square mean of L-functions viewing it as a generalization of the situation considered by Atkinson [1].

Let χ be a Dirichlet character, and put, for two complex variables u and v

$$
Q(u, v ; q)=\frac{1}{\varphi(q)} \sum_{x(\bmod q)} L(u, \chi) L(v, \bar{\chi}),
$$

where $q \geqq 2$ and φ is the Euler function. If $\operatorname{Re}(u)>1, \operatorname{Re}(v)>1$, then

$$
\begin{equation*}
Q(u, v, q)=L\left(u+v, \chi_{0}\right)+f(u, v ; q)+f(v, u ; q), \tag{1}
\end{equation*}
$$

where χ_{0} is the principal character $\bmod q$, and

$$
f(u, v ; q)=\sum_{(a, q)=1}^{q} \sum_{n=0}^{\infty} \sum_{n=1}^{\infty}(q m+a)^{-u}(q(m+n)+a)^{-v} .
$$

We need an analytic continuation of $f(u, v ; q)$ valid when $\operatorname{Re}(u)<1, \operatorname{Re}(v)$ <1. This may be obtained by Poisson's summation formula as in [1], but we take an alternative way which starts from the following integral representation: When $\operatorname{Re}(u)>0, \operatorname{Re}(v)>1, \operatorname{Re}(u+v)>2$,

$$
f(u, v ; q)=\frac{q^{-u-v}}{\Gamma(u) \Gamma(v)} \sum_{\substack{a=1 \\(a, q)=1}}^{\infty} \int_{0}^{\infty} \frac{y^{v-1}}{e^{v}-1} \int_{0}^{\infty} \frac{e^{(\alpha / q)(x+y)}}{e^{x+y}-1} x^{u-1} d x d y .
$$

To remove the singularity at $x+y=0$ we put

$$
h(z ; q)=\sum_{\substack{a,-1)=1 \\(a, q)=1}}^{q}\left(\frac{e^{(a / q) z}}{e^{z}-1}-\frac{1}{z}\right),
$$

and note that when $0<\operatorname{Re}(u)<1$ and $y>0$

$$
\int_{0}^{\infty} x^{u-1}(x+y)^{-1} d x=y^{u-1} \Gamma(u) \Gamma(1-u) .
$$

Then, we find that when $0<\operatorname{Re}(u)<1, \operatorname{Re}(u+v)>2$,

$$
\begin{align*}
& f(u, v ; q) \tag{2}\\
& \quad=\varphi(q) q^{-(u+v)} \Gamma(u+v-1) \Gamma(1-u)\{\Gamma(v)\}^{-1} \zeta(u+v-1)+g(u, v ; q),
\end{align*}
$$

where

$$
g(u, v ; q)=\frac{q^{-u-v}}{\Gamma(u) \Gamma(v)} \int_{0}^{\infty} \frac{y^{v-1}}{e^{y}-1} \int_{0}^{\infty} h(x+y ; q) x^{u-1} d x d y .
$$

Next we introduce the contour \mathcal{C} which starts at infinity, proceeds along the positive real axis to $\delta(0<\delta<1 / 2)$, describes a circle of radius δ counterclockwise round the origin and returns to infinity along the positive real axis; we have, for $0<\operatorname{Re}(u)<1, \operatorname{Re}(u+v)>2$,
(3) $g(u, v ; q)$

$$
=q^{-u-v}\left\{\Gamma(u) \Gamma(v)\left(e^{2 \pi i u}-1\right)\left(e^{2 \pi i v}-1\right)\right\}^{-1} \int_{c} \frac{y^{v-1}}{e^{y}-1} \int_{c} h(x+y ; q) x^{u-1} d x d y
$$

where $x^{u}=\exp (u \log x), y^{v}=\exp (v \log y)$ and $\operatorname{Im} \log x, \operatorname{Im} \log y$ vary from 0 to 2π round \mathcal{C}. But this double integral is absolutely convergent for $R e(u)<1$ and arbitrary v; thus (2) and (3) provide $f(u, v ; q)$ the required analytic continuation. Hence from (1)-(3) we see that when $\operatorname{Re}(u)<1$, $R e(v)<1$,

$$
\begin{aligned}
Q(u, v ; q)= & L\left(u+v ; \chi_{0}\right)+\varphi(q) q^{-u-v} \Gamma(u+v-1) \zeta(u+v-1) \\
& \cdot\left\{\frac{\Gamma(1-u)}{\Gamma(v)}+\frac{\Gamma(1-v)}{\Gamma(u)}\right\}+g(u, v ; q)+g(v, u ; q) .
\end{aligned}
$$

In particular, setting $v=1-u$, we obtain

$$
\text { Lemma 1. If } 0<\operatorname{Re}(u)<1 \text {, then }
$$

$$
\begin{aligned}
Q(u, 1-u ; q)= & \frac{\varphi(q)}{q}\left\{\frac{1}{2}\left(\frac{\Gamma^{\prime}}{\Gamma}(u)+\frac{\Gamma^{\prime}}{\Gamma}(1-u)\right)+2 \gamma+\log \frac{q}{2 \pi}+\sum_{p \mid q} \frac{\log p}{p-1}\right\} \\
& +g(u, 1-u ; q)+g(1-u, u ; q),
\end{aligned}
$$

where γ is the Euler constant, and p runs over prime divisors of $q ; g$-terms are defined by (3).
2. Now, as an application of the above result we consider the asymptotical estimation of

$$
\frac{1}{\varphi(q)} \sum_{\chi(\bmod q)}\left|L\left(\frac{1}{2}+i t, \chi\right)\right|^{2},
$$

where t is real. Heath-Brown [2] studied the special case where $t=0$, and obtained an expression which when q is a prime yields an asymptotic series in terms of $q^{-1 / 2}$. We consider this problem on a little more general condition that t be arbitrary but fixed. Lemma 1 reduces the problem to the estimation of $g(u, 1-u ; q), 0<\operatorname{Re}(u)<1$. For this sake we note first that

$$
h(z ; q)=\sum_{r \mid q} \mu\left(\frac{q}{r}\right) h\left(\frac{z}{r} ; 1\right)
$$

where μ is the Möbius function. Thus by (3) we get, after some rearrangement,

$$
\begin{align*}
g(u, 1-u ; q)= & \frac{1}{q} \zeta(u) \zeta(1-u) \sum_{r \mid q} \mu\left(\frac{q}{r}\right) r^{u} \\
& +\frac{1}{4 \pi q \sin (\pi u)} \sum_{r \mid q} \mu\left(\frac{q}{r}\right) r^{u} \int_{c} \frac{y^{-u}}{e^{y}-1} \tag{4}\\
& \cdot \int_{c}\left(h\left(x+\frac{y}{r} ; 1\right)-h(x ; 1)\right) x^{u-1} d x d y
\end{align*}
$$

This double integral admits an asymptotic expansion in terms of r^{-1} which arises from the power series expansion of $h(x+y / r ; 1)-h(x ; 1)$ in terms of y / r. But we are unable to proceed further without assuming that q has no small prime factors. Thus we restrict ourselves to the simplest situation where q is a prime number. Then (4) becomes

$$
\begin{aligned}
g(u, 1-u ; q)= & q^{u-1} \zeta(u) \zeta(1-u)-q^{-1} g(u, 1-u ; 1) \\
& +\frac{q^{u}}{4 \pi q \sin (\pi u)} \int_{c} \frac{y^{-u}}{e^{y}-1} \int_{c}\left(h\left(x+\frac{y}{q} ; 1\right)-h(x ; 1)\right) x^{u-1} d x d y
\end{aligned}
$$

and this gives rise to an asymptotic expansion for $g(u, 1-u ; q)$. In particular we have
(5) $g(u, 1-u ; q)=q^{u-1} \zeta(u) \zeta(1-u)-q^{-1} g(u, 1-u ; 1)+O\left(\left|q^{u}\right| q^{-2}\right)$.

To show this we need only to remark that the differentiation gives

$$
|h(x+(y / q) ; 1)-h(x ; 1)|=O\left(q^{-1}|y|\left(1+|x|^{2}\right)^{-1}\right)
$$

uniformly for all $x, y \in \mathcal{C}$. Thus by Lemma 1 and (5) we obtain
Theorem. Let t be real and fixed, and let q run over prime numbers.
Then we have

$$
\begin{aligned}
& (q-1)^{-1} \sum_{\chi(\bmod q)}\left|L\left(\frac{1}{2}+i t, \chi\right)\right|^{2}=\log \frac{q}{2 \pi}+2 \gamma+R e \frac{\Gamma^{\prime}}{\Gamma}\left(\frac{1}{2}+i t\right) \\
& \quad+2 q^{-1 / 2}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} \cos (t \log q)-q^{-1}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2}+O\left(q^{-3 / 2}\right)
\end{aligned}
$$

Remark. Our result agrees with that of Heath-Brown [2]; to see this one should note that $\left(\Gamma^{\prime} / \Gamma\right)(1 / 2)=-\gamma-2 \log 2$. Also it should be remarked that our result suggests some peculiar relation between the zeros of ζ and the values of L-functions.
3. The study of $Q(1 / 2+i t, 1 / 2-i t ; q)$ for variable t and q, which is to be developed in our later notes, will naturally require more subtle analysis than that of the preceding paragraph. As a preparation we show here a further transformation of (3) when $u+v=1, \operatorname{Re}(u)<0$:

Lemma 2. If $\operatorname{Re}(u)<0$, then

$$
g(u, 1-u ; q)=2 q^{-1} \sum_{r \mid q} \mu\left(\frac{q}{r}\right) r \sum_{n=1}^{\infty} d(n) \int_{0}^{\infty} x^{-u}(x+1)^{u-1} \cos (2 \pi r n x) d x
$$

where d is the divisor function.
This corresponds precisely to the expression of $g(u, 1-u ; 1)$ shown in [1, p. 357]. As for the proof it may be enough to remark that when $\operatorname{Re}(u)$ <0 the inner integral of (3) is equal to minus the sum of all residues arising from the poles at $x=-y+2 \pi i n(n= \pm 1, \pm 2, \cdots)$.

References

[1] F. V. Atkinson: The mean value of the Riemann zeta-function. Acta Math., 81, 353-376 (1949).
[2] D. R. Heath-Brown: An asymptotic series for the mean value of Dirichlet L functions. Comment. Math. Helv., 56, 148-161 (1981).

