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An e[liptic surface [3]is a complex surface M with a holomorphic map
of M onto a Riemann surface S such that the inverse image -’(p)of any

general point p is an elliptic curve. Matsumoto [4] [5] proved that the
diffeomorphism type of M is completely determined by its euler number
e(M) and the genus of S if M contains no multiple fiber. (The case when
the genus of S is 0 was proved by Kas [2] and Moishezon [6].) The case
when M has multiple fibers is more difficult and actually there are exam-
ples with exotic smooth structures (Dolgacev surfaces)as was proved by
Donaldson [1], Morgan, and Friedman. However we can show that in
many cases the diffeomorphism types of the elliptic surfaces are completely
determined by their euler numbers and their fundamental groups. By
Moishezon [6] we may assume that every singular fiber of the elliptic sur-
faces with which we are concerned is either a multiple torus I0 or a fiber
of type/ ([3]). Let : M--S be such an elliptic surface. We can consider
S as a 2-orbi[o[d such that every point p which is the image by of a
multiple torus of multiplicity m is a cone point of cone angle 2/m
(i=1, ..., k). Then we have"

Theorem. Let " M-S and ’" M’--S’ be the relatively minima
e[liptic surfaces. Suppose that S and S’ are either euclidean or hyperbolic.
Then M is diffeomorphic to M’ i[ and only if e(M)=e(M’) and M-M’.

This theorem is divided into the following two cases.
Case 1. e(M) (e(M’))>O. This implies that M(M’) contains at least

one singular fiber other than a multiple torus. In this case Theorem also
holds when S(S’) is spherical with 3 cone points and is derived from:

Claim A. I[ S is isomorphic to. S’ as 2-orbi[o[ds, then M is diffeomor-
phic to M’ i and only i e(M)=e(M’).

Claim B. I[ S is not isomorphic to S’, then M:/:M’.
Case 2. e(M)=e(M’)=O. In this case every singular fiber of M(M’)

is a multiple torus. M and M’ are considered as 4-dimensional Seifert
fiberings studied by Thornton [8] and Zieshang [9]. Theorem in this case
was proved by Zieshang [9] if S and S’ are hyperbolic, and was proved by
Sakamoto-Fukuhara [7] if S=S’=T. In the other cases we can see that
M--M’ implies that there is a diffeomorphism between M and M’ (not
necessarily fiber-preserving). We can also see that there are seven ex-
amples each of which admits both the structure of a T-bundle over T and
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the structure of a Seifert fibering over a euclidean 2-orbifold of genus 0.
The details of the proof will appear elsewhere.
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