6. Gauss Sums of Prehomogeneous Vector Spaces*)

By Akihiko Gyoja and Noriaki Kawanaka
Department of Mathematics, Osaka University
(Communicated by Shokichi Iyanaga, m. J. A., Jan. 12, 1985)

In the present article, we study a generalization of the classical Gauss sum which is associated with a prehomogeneous vector space, by using the micro-local analysis. Details which are omitted here will be published elsewhere.

1. Let V be a finite dimensional vector space over C and G a connected algebraic subgroup of $G L(V)$ which acts prehomogeneously on V, that is, there exists a proper algebraic subset S of V such that G acts homogeneously on $V-S$. We call such a pair (G, V) a prehomogeneous vector space. (See [12].) Hereafter we assume the following two conditions:
(1.1) G acts irreducibly on V.
(1.2) S is an (irreducible) hypersurface of V, that is, there exists an irreducible polynomial $f(v)$ such that $S=\{v \in V \mid f(v)=0\}$.
Such a prehomogeneous vector space is said to be irreducible and regular. Let V^{\vee} be the dual space of V. Then (G, V^{\vee}) is also an irreducible, regular prehomogeneous vector space. We define S^{\vee} and f^{\vee} in the same way as S and f. Let \langle,$\rangle be the natural pairing of V^{\vee}$ and V. Let $V^{\vee}{ }^{\text {pr } \vee} V^{\vee} \times V$ $\xrightarrow{\mathrm{pr}} V$ be the projections and $j: V-S \rightarrow V, j^{\vee}: V^{\vee}-S^{\vee} \rightarrow V^{\vee}$ the inclusion mappings. Let $n=\operatorname{dim} V$ and $d=\operatorname{deg} f$. It is known that there exists a polynomial $b(s)$ such that

$$
f^{\vee}(\operatorname{grad}) f^{s+1}=b(s) f^{s} .
$$

(See [12].) It is also known that $b(s)$ is of the form

$$
b(s)=b_{0} \prod_{j=1}^{d}\left(s+\alpha_{j}\right) \quad\left(\alpha_{j} \in \boldsymbol{Q}, \alpha_{j}>0\right),
$$

([6]). Let

$$
b^{\exp }(t)=\prod_{j=1}^{d}\left(t-\exp \left(2 \pi \sqrt{-1} \alpha_{j}\right)\right) .
$$

Then we can show that

$$
\begin{equation*}
b^{\mathrm{exp}}=\prod_{l \geqq 1} \Phi_{l}^{m(l)} \tag{1.3}
\end{equation*}
$$

with some non-negative integers $m(l)$. Here Φ_{l} denotes the l-th cyclotomic polynomial.
2. By a classification [12] of irreducible, regular prehomogeneous vector spaces, we see that (G, V) has a natural Z-structure. If p is a sufficiently large prime number, we can get an irreducible, regular prehomogeneous vector space defined over \boldsymbol{F}_{p}, by the reduction modulo p, which

[^0]we shall denote by the same letter (G, V). (There is no fear of confusion.)
Let \boldsymbol{F}_{q} be a finite extension of $\boldsymbol{F}_{p}, \psi: \boldsymbol{F}_{q} \rightarrow \boldsymbol{C}^{\times}$a non-trivial additive character and $\chi: \boldsymbol{F}_{q} \rightarrow \boldsymbol{C}^{\times}$a multiplicative character. We define $\chi(0)=0$. We denote the order of $\chi \in \operatorname{Hom}\left(\boldsymbol{F}_{q}^{\times}, \boldsymbol{C}^{\times}\right)$by ord (χ). Let
(2.1) $\quad \mathcal{F}_{\psi}[\chi \circ f]\left(v^{\vee}\right)=\sum_{v \in V\left(F_{q}\right)} \chi(f(v)) \psi\left(\left\langle v^{\vee}, v\right\rangle\right) \quad\left(v^{\vee} \in V^{\vee}\left(\boldsymbol{F}_{q}\right)\right)$.

We call this sum the Gauss sum of prehomogeneous vector space (G, V). Such sums were first investigated by Z. Chen [3], and independently by the second named author [9] (in connection with the representation theory of finite reductive groups).
3. Conjecture. If p is sufficiently large,

$$
\mathscr{F}_{\psi}[\chi \circ f]\left(v^{\vee}\right)=\varepsilon(\chi, \psi) q^{(n-m(o r d x)) / 2}\left(\chi^{-1} \otimes \theta\right)\left(f^{\vee}\left(v^{\vee}\right)\right) \quad\left(v^{\vee} \in\left(V^{\vee}-S^{\vee}\right)\left(F_{q}\right)\right),
$$

where $\varepsilon(\chi, \psi)$ is an algebraic number with absolute value one (with respect to any archimedean valuation) and

$$
\theta= \begin{cases}\text { trivial character, } & \text { if } n / d \in Z \\ \text { Legendre symbol, } & \text { if } n / d \in 1 / 2+Z\end{cases}
$$

(See (1.3) for $m(l)$.)
Remark. If χ is trivial, we can calculate $\mathscr{F}_{\psi}[\chi \circ f]\left(v^{\vee}\right)\left(v^{\vee} \in\left(V^{\vee}-S^{\vee}\right)\left(\boldsymbol{F}_{q}\right)\right)$ explicitly using representation theory of finite reductive groups. Our conjecture together with this information implies:

The number of integral roots of $b(s)$ is equal to $\operatorname{rank} G-\operatorname{rank} Z_{G}(x)$ $(x \in V-S)$.
4. Theorem. (a) If $m(\operatorname{ord} \chi)=0$, the above conjecture is true.
(b) If (G, V) does not belong to the castling class (11) in the table of
[12;pp.144-147], the above conjecture is true.
Corollary. If $m(\operatorname{ord} \chi)=0$ and p is sufficiently large,

$$
\mathscr{F}_{\psi}[\chi \circ f]\left(v^{\vee}\right)=0 \quad\left(v^{\vee} \in S^{\vee}\left(F_{q}\right)\right)
$$

5. Outline of proof. We fix a prime number $l(\neq p)$ and an isomorphism $\overline{\boldsymbol{Q}}_{l} \cong \boldsymbol{C}$. Then χ (resp. ψ) can be regarded as an element of $\operatorname{Hom}\left(\boldsymbol{F}_{q}^{\times}, \overline{\boldsymbol{Q}}_{i}^{\times}\right)\left(\right.$resp. $\left.\operatorname{Hom}\left(\boldsymbol{F}_{q}, \overline{\boldsymbol{Q}}_{i}^{\times}\right)\right)$. Let $\mathcal{L}_{\chi}\left(\right.$ resp. $\left.\mathcal{L}_{\psi}\right)$ be the Lang torsor (resp. the Artin-Schreier torsor) on \boldsymbol{G}_{m} (resp. \boldsymbol{G}_{a}) associated with χ (resp. ψ). Note that \mathcal{L}_{χ} is a Kummer torsor. Define the (sheaf theoretical) Fourier transformation [8]

$$
\mathcal{F}_{\psi}: D_{c}^{b}\left(V, \overline{\boldsymbol{Q}}_{l}\right) \longrightarrow D_{c}^{b}\left(V, \overline{\boldsymbol{Q}}_{l}\right)
$$

by

$$
\mathscr{F}_{\psi}[-]=\boldsymbol{R} \operatorname{pr}_{1}^{\vee}\left(\operatorname{pr}^{*}(-) \stackrel{L}{\otimes}\langle \rangle^{*} \mathcal{L}_{\psi}\right) .
$$

(See [4; (1.1.3)] for $D_{c}^{b}\left(-, \overline{\boldsymbol{Q}}_{t}\right)$.) The above theorem is a consequence of the following theorem.

Theorem*. Assume that p is sufficiently large.
(a*) If $m(\operatorname{ord} \chi)=0$, then $j_{1} f^{*} \mathcal{L}_{x}$ is pure of weight zero.
(b*) Assume that (G, V) does not belong to the castling class (11). Then
(b*1) $\left.\mathscr{F}_{\psi}\left[j_{1} f^{*} \mathcal{L}_{x}\right]\right|_{v^{v}-s^{v}}=\left.f^{\vee} * \mathcal{L}_{x^{-1} \otimes \theta}[-n]\right|_{V^{v}-s^{v}}$.
(b*2) $\left.\mathscr{F}_{\psi}\left[j_{1} f^{*} \mathcal{L}_{\chi}\right]\right|_{V^{v}-s^{v}}$ is pure of weight $-m$ (ord $\left.\chi\right)$.
The part (a^{*}) is rather easy.
By considering the Radon transformation [1], [8] or an analogue of
the Jacobi sum, the proof of the equality ($\mathrm{b}^{*} 1$) can be reduced to that of an analogous equality over ($V-S)(C)$. (See [1] [5].) Then, by the RiemannHilbert correspondence [7], our problem can be translated to showing an equality of \mathscr{D}-modules, which we can do. (Here \mathscr{D} is the sheaf of differential operators.)
6. Outline of the proof of $\left(\boldsymbol{b}^{*} 2\right)$. Since $j_{1} f^{*} \mathcal{L}_{x}$ is a perverse sheaf, there is a weight filtration

$$
\begin{equation*}
j_{1} f^{*} \mathcal{L}_{x}=\mathscr{W}_{0} \supset \mathscr{W}_{-1} \supset \mathscr{W}_{-2} \supset \cdots \tag{6.1}
\end{equation*}
$$

(See [2].) Let $s=1 / \operatorname{ord} \chi, \mathscr{M}^{\prime}=\mathscr{D} f^{s}$ and $\mathscr{M}=\mathscr{M}^{\prime}[1 / f]$. Then from the filtration (6.1) and by the same argument as in the proof of (b*1), we can construct a filtration

$$
\begin{equation*}
\mathscr{M}^{*}=\mathscr{M}_{0} \supset \mathscr{M}_{-1} \supset \mathcal{M}_{-2} \supset \cdots . \tag{6.2}
\end{equation*}
$$

Here \mathscr{M}^{*} is the dual (regular, holonomic) \mathscr{D}-module of \mathscr{M}. By using results of [2], [11] and calculations of holonomy diagrams of individual prehomogeneous vector spaces (see [10] and its references), we can prove the following lemma (except for the case of type (11)).

Lemma. (a) $\mathscr{M}_{0} \supseteq \mathcal{M}_{-1} \supseteq \cdots \supseteq \mathcal{M}_{-m(\text { ord } x)} \supseteq \mathcal{M}_{-m(\text { ord } x)-1}=0$.
(b) $\operatorname{Supp} \mathcal{E} \otimes \mathcal{M}_{-m(\operatorname{rad} x)} \supset V^{\vee} \times\{0\}$, where \mathcal{E} is the sheaf of microdifferential operators.

Once this lemma is settled, the remaining is rather easy.
7. Remark. By a more detailed argument, we can determine the set of prime numbers p which should be excluded in our theorem.
8. Remark. In [13], M. Sato and T. Shintani introduced zeta functions associated with prehomogeneous vector spaces. It is natural to expect that our Gauss sums enter in functional equations of " L-functions" of prehomogeneous vector spaces. We learned from F. Sato that this is indeed the case at least when $m(\operatorname{ord} \chi)=0$.

Acknowledgement. The authors would like to express their hearty thanks to J. L. Brylinski and M. Kashiwara for informing them about the work of N. M. Katz and G. Laumon [8].

References

[1] J. L. Brylinski, B. Malgrange, and J. L. Verdier: Transformation de Fourier géométrique I. C. R. Acad. Sci. Paris, 297, 55-58 (1983).
[2] A. A. Beilinson, J. Bernstein, and P. Deligne: Faisceaux pervers. Astérisque, 100, 1-171 (1982).
[3] Z. Chen: Fonction zeta associée à un espace préhomogène et sommes de Gauss. IRMA, Univ. de Strasbourg (1981) (preprint).
[4] P. Deligne: La conjecture de Weil II. Publ. Math. IHES, 52, 137-252 (1980).
[5] R. Hotta and M. Kashiwara: The invariant holonomic system on a semisimple Lie algebra. Invent. Math., 75, 327-358 (1984).
[6] M. Kashiwara: B-functions and holonomic systems. ibid., 38, 33-53 (1976).
[7] -: The Riemann-Hilbert problem for holonomic systems. Publ. RIMS, Kyoto Univ., 20, 319-365 (1984).
[8] N. M. Katz and G. Laumon: Transformation de Fourier et Majoration de sommes exponentielles (preprint).
[9] N. Kawanaka: Open problems in algebraic groups (Proc. of the Conference on "Algebraic groups and their representations" held at Katata, 1983), p. 13.
[10] T. Kimura: The b-functions and holonomy diagrams of irreducible regular prehomogeneous vector spaces. Nagoya Math. J., 85, 1-80 (1982).
[11] M. Sato, M. Kashiwara, T. Kimura, and T. Oshima: Micro-local analysis of prehomogeneous vector spaces. Invent. Math., 62, 117-179 (1980).
[12] M. Sato and T. Kimura: A classification of irreducible prehomogeneous vector spaces and their relative invariants. Nagoya Math. J., 65, 1-155 (1977).
[13] M. Sato and T. Shintani: On zeta functions associated with prehomogeneous vector spaces. Ann. Math., 100, 131-170 (1974).

[^0]: *) This research was supported in part by Grant-in-Aid for Scientific Research (No. 59460001), The Ministry of Education, Science and Culture, Japan.

