50. Remarks on a Closed Subalgebra of a Banach Function Algebra

By Osamu Hatori
Department of Mathematics, School of Education, Waseda University (Communicated by Kôsaku Yosida, m. J. A., June 11, 1985)

1. Let X be a compact Hausdorff space. We say that A is a Banach function algebra on X if A is a unital subalgebra of $C(X)$ with a Banach algebra norm which separates the points of X. A function algebra is a Banach function algebra with the uniform norm as the Banach algebra norm. It is well-known that $\|f\|_{\infty} \leq N(f)$ for all f in a Banach function algebra on X with the norm $N(\cdot)$, where $\|\cdot\|_{\infty}$ denotes the uniform norm on X. Some time ago I. Glicksberg [3] extended a theorem of HoffmanWermer [4] when X is metrizable. J. Wada [7] generalized the result of Glicksberg for the case that X is a compact Hausdorff space. He in fact showed the following :

Theorem W. Let A be a function algebra on a compact Hausdorff space X. Let N be a closed linear subspace of $C(X)$ and I be a closed ideal in A with $A+\bar{I} \supset N \supset I$. If $N+\bar{I}$ is uniformly closed, then $I=\bar{I}$, where \bar{I} denotes the complex conjugate of I, i.e., $\bar{I}=\{f \in C(X): \bar{f} \in I\}$.
R. D. Mehta and M. H. Vasavada [5] showed a Wada's type theorem for the case of a Banach function algebra with the hypothesis of continuity for $f \mapsto \bar{f}$ on $A \cap \bar{A}$.

In this paper we obtain similar results concerning to a closed subalgebra of a Banach function algebra. As a corollary of the main result we show a Wada's type theorem for the case of a Banach function algebra which removes the hypothesis of a theorem of R. D. Mehta and M. H. Vasavada.

We denote $c l E$ the uniform closure of E for a subset E of $C(X)$ and \bar{E} the complex conjugate of E, i.e., $\bar{E}=\{f \in C(X): \bar{f} \in E\} . \quad A_{R}=A \cap C_{R}(X)$ is the set of all real valued continuous functions in A.

Let A be a Banach function algebra on a compact Hausdorff space X and I be a closed subalgebra of A. We define an equivalence relation \approx in X as follows:

$$
x \approx y \Longleftrightarrow f(x)=f(y) \quad \text { for every } f \text { in } I .
$$

We denote $\left\{E_{\alpha}\right\}$ the equivalence class for the equivalence relation \approx, especially we denote $E_{0}=\{x \in X: f(x)=0$ for $\forall f \in I\}$. Our main result is the following :

Theorem. Let A be a Banach function algebra on a compact Hausdorff space X. Let I be a closed subalgebra of A such that $I \cdot A_{R} \subset I$, where
$I \cdot A_{R}=\left\{f g \in C(X): f \in I, g \in A_{R}\right\}$. Suppose that $A+\bar{I} \supset c l(I+\bar{I})$. Then we have $\bar{I}=I=\left\{f \in C(X): f=\right.$ constant on E_{α} for $\forall \alpha, f=0$ on $\left.E_{0}\right\}$.
2. We prove Theorem and show some corollaries in this section. By a theorem of Saeki [6, Theorem 3.3], it is easy to see:

Lemma 1. Under the assumption of Theorem, we have $c l I=\overline{c l I}=c l \bar{I}$.
We denote X / I the quotient space which is defined by identifying the points of X which cannot be separated by I. We may suppose that I is a subalgebra of $C(X / I)$. Let e be the point in X / I which corresponds to E_{0}.

Lemma 2. $c l I=\left\{f \in C(X): f=\right.$ constant on E_{α} for $\forall \alpha, f=0$ on $\left.E_{0}\right\}$.
Proof. We suppose that $E_{0}=\phi$ for the first case. Let [I] be a uniformly closed algebra generated by I and constant functions. We may regard [I] as a function algebra on X / I, in fact we see that $[I]=C(X / I)$ by the Stone-Weierstrass theorem and Lemma 1. Thus we have

$$
C(X / I) \cdot c l I \subset c l I
$$

since $c l I$ is a closed subalgebra of $C(X / I)$, where

$$
C(X / I) \cdot c l I=\{f g \in C(X / I): f \in C(X / I), g \in c l I\} .
$$

There exists a finite number of functions $f_{1}, f_{2}, \cdots, f_{n}$ in I such that

$$
\left|f_{1}\right|^{2}+\left|f_{2}\right|^{2}+\cdots+\left|f_{n}\right|^{2}>1 / 2
$$

on X, for we suppose that $E_{0}=\phi$. So we have $1 \in c l I$, since

$$
\left(\left|f_{1}\right|^{2}+\left|f_{2}\right|^{2}+\cdots+\left|f_{n}\right|^{2}\right)^{-1} \in C(X / I) \quad \text { and } \quad f_{1} \bar{f}_{1}+f_{2} \bar{f}_{2}+\cdots+f_{n} \bar{f}_{n}
$$

is in $c l I=\overline{c l \bar{I}}$. Thus we get

$$
c l I=C(X / I)
$$

or more precisely we have $c l I=\left\{f \in C(X): f=\right.$ constant on E_{α} for $\left.\forall \alpha\right\}$ if $E_{0}=\phi$.

For the second case we suppose that $E_{0} \neq \phi . \quad$ By the same way as the first case, we see that $[I]=C(X / I)$ and that $C(X / I) \cdot c l I \subset c l I$. We may suppose that $X / I \sim\{e\}$ is a locally compact Hausdorff space, so we may suppose that $c l l$ is a closed subalgebra of $C_{0}(X / I \sim\{e\})$, where $C_{0}(X / I \sim\{e\})$ is the algebra of all complex valued bounded continuous functions on $X / I \sim\{e\}$ which vanish at infinity. Let Y be a compact subset of $X / I \sim\{e\}$. Then there are a finite number of functions $f_{1}, f_{2}, \cdots, f_{n}$ in I such that

$$
\left|f_{1}\right|^{2}+\left|f_{2}\right|^{2}+\cdots+\left|f_{n}\right|^{2}>1 / 2
$$

on Y. For each g in $C(Y)$, there is a G_{j} in $C_{0}(X / I \sim\{e\})$ for $j=1,2, \cdots, n$ such that

$$
G_{j} \mid Y=g \cdot \bar{f}_{j} \cdot\left(\left|f_{1}\right|^{2}+\left|f_{2}\right|^{2}+\cdots+\left|f_{n}\right|^{2}\right)^{-1} .
$$

We see that

$$
\left(G_{1} f_{1}+G_{2} f_{2}+\cdots+G_{n} f_{n}\right) / Y=g
$$

is in $(c l l) \mid Y$ since $C_{0}(X / I \sim\{e\}) \cdot c l I \subset c l I$, so we have $(c l I) \mid Y=C(Y)$. It follows that

$$
c l I=\left\{f \in C(X): f=\mathrm{constant} \text { on } E_{\alpha} \text { for } \forall \alpha, f=0 \text { on } E_{0}\right\}
$$

by a theorem of Bade and Curtis [2, p. 91, Proposition 1].
Proof of Theorem. Put

$$
C_{I}(X)=\left\{f \in C(X): f=\mathrm{constant} \text { on } E_{\alpha} \text { for } \forall \alpha\right\}
$$

and

$$
A_{I}=\left\{f \in A: f=\text { constant on } E_{\alpha} \text { for } \forall \alpha\right\} .
$$

Then A_{I} is a closed subalgebra of A and $A_{I} \supset I$. Thus we may assume that A_{I} is a Banach function algebra on X / I. By Lemma 2 it is easy to see that $A+\bar{I} \supset C_{I}(X)$. It follows that $A_{I}+\bar{I} \supset C_{I}(X)$. For, if f is in $C_{I}(X)$ there are a g in A and an h in I such that $f=g+\bar{h}$. So $g=f-\bar{h}$ is constant on each E_{α}, that is, g is in A_{I}. Thus we have

$$
A_{I}+\bar{A}_{I} \supset C_{I}(X)
$$

By a Hoffman and Wermer and Bernard theorem [1], [4] on a uniformly closed real parts of a Banach function algebra, we see that $A_{I}=C_{I}(X)$. Thus I is uniformly closed since I is closed subalgebra of A_{I} by the definition of A_{I}. We conclude that

$$
\begin{aligned}
I & =c l I \\
& =\left\{f \in C(X): f=\mathrm{constant} \text { on } E_{\alpha} \text { for } \forall \alpha, f=0 \text { on } E_{0}\right\} \\
& =\overline{c l I}=\bar{I} .
\end{aligned}
$$

Corollary 1. Let A be a Banach function algebra on X and I be a closed subalgebra of A which separates the points of X. Suppose that $I \cdot A_{R} \subset I$ and $\operatorname{Re} A \supset c l(\operatorname{Re} I)$. Then we have $A=C(X)$ and $I=\{f \in C(X): f=0$ on $\left.E_{0}\right\}$. Especially if I is a closed ideal of A such that $E_{0}=\phi$ or a one point set such that $\operatorname{Re} A \supset c l(\operatorname{Re} I)$, then we have $A=C(X)$ and $I=\{f \in C(X): f=0$ on E_{0} \}.

Proof. Since I separates the points of X, it follows that $A+\bar{A}=C(X)$ by the same way as the proof of Theorem. Thus we see that $A=C(X)$ and $I=\left\{f \in C(X): f=0\right.$ on $\left.E_{0}\right\}$.

Remark. In Corollary 1 the assumption " $I \cdot A_{R} \subset I$ " is necessary. For example, put $A=\{f \in C(D): f(z)$ is analytic in $|z|<1 / 2\}$, where $D=\{z \in C$: $|z| \leq 1\}$, and $I=\{f \in C(D): f$ is analytic on $|z|<1\}$ is the disk algebra on the closed unit disk. Then it is trivial that $I \subset A$ and I separates the points of X and $\operatorname{Re} A \supset c l(\operatorname{Re} I)$. On the other hand it is trivial that $A \neq C(X)$ and $A \neq I$.

Corollary 2. Let A be a Banach function algebra on X and I be a closed ideal of A. Suppose that $A+\bar{I} \supset c l(I+\bar{I})$. Then we see $I=\bar{I}=$ $\left\{f \in C(X): f=0\right.$ on $\left.E_{0}\right\}$.

Proof. Each E_{α} is a one point set unless $E_{\alpha}=E_{0}$, since I is an ideal.
We can remove the hypothesis of the continuity of a functional $f \mapsto \bar{f}$ on $A \cap \bar{A}$ for a theorem of Mehta and Vasavada [5].

Corollary 3. Let A be a Banach function algebra on X. Let N be a linear subspace of $C(X)$ and I be a closed ideal of A with $A+\bar{I} \supset N \supset I$. If $N+\bar{I}$ is uniformly closed, then $\bar{I}=I=\left\{f \in C(X): f=0\right.$ on $\left.E_{0}\right\}$.

The author wishes to express his hearty thanks to Professor J. Wada for his valuable advice and constant encouragement.

References

[1] A. Bernard: Espace de parties réeles des éléments d’une algèbre de Banach de fonctions. J. Funct. Anal., 10, 287-409 (1972).
[2] F. T. Birtel, ed.: Function Algebra. Scott Foresman and Company (1966).
[3] I. Glicksberg: On two consequences of a theorem of Hoffman and Wermer. Math. Scand., 23, 188-192 (1968).
[4] K. Hoffman and J. Wermer: A characterization of $C(X)$. Pacific J. Math., 12, 941-944 (1962).
[5] R. D. Mehta and M. H. Vasavada: Wada's type result for a Banach function algebra. Math. Japonica, 24, 25-27 (1979).
[6] J. Tanaka: Real parts of Banach function algebras. J. Math. Soc. Japan, 29, 763-769 (1977).
[7] J. Wada: On a theorem of I. Glicksberg. Proc. Japan Acad., 48, 227-230 (1972).

