47. The Existence of Spectral Decompositions in L^{p}-Subspaces

By Earl Berkson*),t) and T. A. Gillespie**),tt)
(Communicated by Kôsaku Yosida, m. J. A., June 11, 1985)

1. Introduction. In this note we outline the main results of a forthcoming paper [4]. Throughout we suppose that μ is an arbitrary measure, $1<p<\infty$, and Y is a subspace of $L^{p}(\mu)$. An invertible operator $V \in \mathscr{B}(Y)$ will be called power-bounded provided $\sup _{n \in \boldsymbol{Z}}\left\|V^{n}\right\|<\infty$, where Z denotes the additive group of integers. We show that $\left\{V^{n}\right)_{n=-\infty}^{\infty}$ is automatically the Fourier-Stieltjes transform of a spectral family of projections concentrated on $[0,2 \pi]$ (see $[1, \S 2]$ for definitions and the Riemann-Stieltjes integration theory of spectral families). We deduce that every bounded, oneparameter group on Y is the Fourier-Stieltjes transform of a spectral family of projections $E(\cdot): R \rightarrow \mathcal{B}(X)$. This result generalizes work in [2], [8], and can be used to obtain a complete analogue for $L^{p}(\mathcal{K})$ of Helson's correspondence $[10, \S 2.3]$ between cocycles and the normalized, simply invariant subspaces of $L^{2}(\mathcal{K})$, where \mathcal{K} is a compact abelian group with archimedean ordered dual. In particular, in $L^{p}(\mathcal{K})$ every such invariant subspace is the range of a bounded projection.
2. Abstract results. An operator U on a Banach space X is called trigonometrically well-bounded [3] provided

$$
U=\int_{[0,2 \pi]}^{\oplus} e^{i \lambda} d E(\lambda)
$$

for a spectral family of projections $E(\cdot): R \rightarrow \mathcal{B}(X)$ such that the strong left-hand limits $E\left(0^{-}\right), E\left((2 \pi)^{-}\right)$are $0, I$, respectively. $E(\cdot)$ is necessarily unique, and will be called the spectral decomposition of U. Let $B V(T)$ be the Banach algebra of complex-valued functions having bounded variation on the unit circle. For $f \in B V(T)$ put

$$
F_{1}(t)=\lim _{s \rightarrow t^{+}} f\left(e^{i s}\right), \quad F_{2}(t)=\lim _{s \rightarrow t^{-}} f\left(e^{i s}\right)
$$

for $t \in \boldsymbol{R}$, and let \hat{f} be the Fourier transform of f.
(2.1) Theorem. Let $U \in \mathscr{B}(X)$ be trigonometrically well-bounded and power-bounded, and suppose $f \in B V(T)$. Then $\sum_{n=-N}^{N} \hat{f}(n) U^{n}$ converges in the strong operator topology, as $N \rightarrow+\infty$, to

$$
2^{-1} \int_{[0,2 \pi]}^{\oplus}\left(F_{1}+F_{2}\right) d E,
$$

where $E(\cdot)$ is the spectral decomposition of U.
Proof. For $t \in R, x \in X$, let

[^0]\[

$$
\begin{equation*}
\Phi(t) x=\int_{[0,2 \pi]}^{\oplus} f\left(e^{i t} e^{i \lambda}\right) d E(\lambda) x \tag{2.2}
\end{equation*}
$$

\]

and put

$$
\hat{\Phi}(n)=(2 n)^{-1} \int_{0}^{2 \pi} e^{-i n t} \Phi(t) x d t
$$

for $n \in Z$. If we replace $\Phi(t) x$ in the second integral by the right of (2.2) and interchange the order of integration, we obtain $\hat{\Phi}(n) x=\hat{f}(n) U^{n} x$. This step requires further justification, however, since $E(\cdot)$ is not given by a measure. By [6, Lemma 17.2 and proof of 17.4] the approximating sums for the integral in (2.2) converge uniformly in t, and this fact legitimizes the foregoing argument. The vector-valued versions of Fejér's Theorem and a standard Tauberian theorem of Hardy [11, Theorems I.3.1, II.2.2] together with [6, Theorem 17.5] can now ke applied to $\Phi(t) x$ at $t=0$ to give the conclusion of (2.1) readily.

Henceforth the convergence of a series $\sum_{n=-\infty}^{\infty} u_{n}$ will signify that of the "balanced" partial sums, $\sum_{n=-N}^{N} u_{n}$, and $\|\cdot\|_{T}$ will denote the norm of $B V(T)$.
(2.3) Corollary. Under the hypotheses of Theorem (2.1):
(i) there is a constant C_{U} such that
(2.4) $\quad\left\|\sum_{n=-N}^{N} \hat{f}(n) U^{n}\right\| \leq C_{U}\|f\|_{T}, \quad$ for $N \geq 0, f \in B V(T)$;
(ii) for $0 \leq \lambda<2 \pi, x \in X$,

$$
\begin{align*}
E(\lambda) x= & \sum_{k=-\infty}^{\infty} \hat{g}_{\lambda}(k) U^{k} x+\lim _{n}(2 n)^{-1} \sum_{k=0}^{n-1} e^{-i k \lambda} U^{k} x \tag{2.5}\\
& +\lim _{n}(2 n)^{-1} \sum_{k=0}^{n-1} U^{k} x,
\end{align*}
$$

where $g_{\lambda} \in B V(\boldsymbol{T})$ is the characteristic function of $\left\{e^{i t}: 0 \leq t \leq \lambda\right\}$.
Proof. Standard considerations with the Fourier series of $\Phi(t) x$ show that

$$
\sum_{k=-n}^{n}\left(1-\frac{|k|}{n+1}\right) \hat{f}(k) U^{k} x=(2 \pi)^{-1} \int_{0}^{2 \pi} K_{n}(t) \Phi(t) x d t
$$

where $\left\{K_{n}\right\}$ is Fejér's kernel. Since $f \in B V(T),|\hat{f}(k)| \leq(2 \pi|k|)^{-1} \operatorname{var}(f, T)$, for $k \neq 0$. The conclusion in (2.4) is immediate from these facts and application of [1, Proposition (2.3)] to (2.2). By Theorem (2.1) the series on the right of (2.5) is $2^{-1}\left\{E\left(\lambda^{-}\right)+E(\lambda)-E(0)\right\} x$. The functional calculus described in [1, Proposition (2.3)] can be used to show that the second term in (2.5) is $2^{-1}\left\{E(\lambda)-E\left(\lambda^{-}\right)\right\} x$. We omit the details.
3. Spectral decomposition of power-bounded operators on \boldsymbol{Y}. Throughout this section V will denote a power-bounded operator on the subspace Y of $L^{p}(\mu)$, as set forth in §1. We put $c=\sup _{n \in Z}\left\|V^{n}\right\|$.
(3.1) Transference lemma. For any trigonometric polynomial

$$
Q(z) \equiv \sum_{n=-N}^{N} a_{n} z^{n}(z \in T),\|Q(V)\| \leq c^{2}\|Q\|_{p, p}
$$

where $\|Q\|_{p, p}$ is the $L^{p}(Z)$-multiplier norm of Q.
Proof. The demonstration is a special case, for the group Z and the representation $n \mapsto V^{n}$, of the proof in [5, Theorem 2.4].
(3.2) Theorem. V is trigonometrically well-bounded, and

$$
\sup \{\|E(\lambda)\|: \lambda \in R\} \leq A_{p} c^{2}
$$

where $E(\cdot)$ is the spectral decomposition of V, and A_{p} is a constant depending only on p.

Proof. Application of Stečkin's Theorem [7, Theorem 6.4.4] to Theorem (3.1) shows that V has a continuous $A C(T)$-functional calculus, where $A C(T)$ is the subalgebra of $B V(T)$ consisting of all absolutely continuous functions. By [3, Theorem 2.3], V is trigonometrically well-bounded, and $\sup \{\|E(\lambda)\|: \lambda \in R\} \leq 3 c^{2} \alpha_{p}$, where α_{p} is the constant of Stečkin's Theorem.
(3.3) Corollary, For $f \in B V(T),\left\|\sum_{n=-\infty}^{\infty} \hat{f}(n) V^{n}\right\| \leq c^{2}\|f\|_{p, p}$.

Proof. Let $\sigma_{N}(f, V)$ be the $N^{\text {th }}$ Cesàro mean for $\sum_{n=-\infty}^{\infty} \hat{f}(n) V^{n}$, and put $Q_{N}=K_{N} * f$. Thus $\sigma_{N}(f, V)=Q_{N}(V)$, and so $\left\|\sigma_{N}(f, V)\right\| \leq c^{2}\left\|Q_{N}\right\|_{p, p} \leq c^{2}\|f\|_{p, p}$. Let $N \rightarrow+\infty$ and apply Theorem (2.1).
(3.4) Corollary. V has a logarithm belonging to $\mathscr{B}(Y)$.
(3.5) Corollary. Every hermitian-equivalent operator T on Y is wellbounded.

Proof. The hypothesis (see [6, p. 108]) is that $e^{i r}$ is power-bounded. Theorem (3.2) and the proof in [6, Theorem 20.28] now give the conclusion.

Remarks. (i) Theorem (3.2) generalizes theorems in [9] and [12] concerning translation operators. (ii) If Y is replaced by an arbitrary reflexive space, the first assertion in Theorem (3.2), as well as Corollary (3.4), fails [4, (5.1), (5.4)].
(3.6) Theorem. If $\left\{V_{t}\right\}, t \in \boldsymbol{R}$, is a strongly continuous, one-parameter group of operators on Y such that $\sup _{t \in \boldsymbol{R}}\left\|V_{t}\right\|<\infty$, then there is a unique spectral family $E(\cdot)$ of projections in Y such that

$$
V_{t} y=\lim _{a \rightarrow+\infty} \int_{-a}^{a} e^{i t \lambda} d E(\lambda) y, \quad \text { for } y \in Y, t \in R
$$

Moreover, $\left\{V_{t}: t \in \boldsymbol{R}\right\}$ and $\{E(\lambda): \lambda \in \boldsymbol{R}\}$ have the same commutants.
Proof. By Theorem (3.2), $\left\{V_{t}\right\}$ satisfies the hypotheses of [1, Theorem (4.20)].

References

[1] H. Benzinger, E. Berkson, and T. A. Gillespie: Spectral families of projections, semigroups, and differential operators. Trans. Amer. Math. Soc., 275, 431-475 (1983).
[2] E. Berkson: Spectral families of projections in Hardy spaces. J. Funct. Anal., 60, 146-167 (1985).
[3] E. Berkson and T. A. Gillespie: AC functions on the circle and spectral families. J. Operator Theory, 13, 33-47 (1985).
[4] --: Stečkin's theorem, transference, and spectral decompositions (submitted).
[5] R. R. Coifman and G. Weiss: Transference methods in analysis. Regional Conference Series in Math., no. 31, Amer. Math. Soc., Providence (1977).
[6] H. R. Dowson: Spectral theory of linear operators. London Math. Soc. Monographs, no. 12, Academic Press, New York (1978).
[7] R. E. Edwards and G. I. Gaudry: Littlewood-Paley and multiplier theory. Ergeb. der Math., 90, Springer-Verlag, New York (1977).
[8] D. Fife: Spectral decomposition of ergodic flows on L^{p}. Bull. Amer. Math. Soc., 76, 138-141 (1970).
[9] T. A. Gillespie: A spectral theorem for L^{p} translations. J. London Math. Soc., (2) 11, 499-508 (1975).
[10] H. Helson: Analyticity on compact abelian groups. Algebras in Analysis. Proc. 1973 Birmingham Conference. Academic Press, London, pp.1-62 (1975).
[11] Y. Katznelson: An Introduction to Harmonic Analysis. Dover, New York (1976).
[12] G. V. Wood: Logarithms in multiplier algebras. Proc. Edinburgh Math. Soc., (2) 22, 187-190 (1979).

[^0]: *) Department of Mathematics, University of Illinois.
 **) Department of Mathematics, University of Edinburgh.
 ${ }^{\dagger}$) Supported by the National Science Foundation (U.S.A.).
 ${ }^{\text {tt) }}$ Supported by the Science and Engineering Research Council (U.K.).

