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47. The Existence of Spectral Decompositions in L.Subspaces

By Earl BERKSON*)’*) and T. A. GILLESPIE**)’*t)

(Communicated by K6saku YOSlDA, M. Z. A., June 11, 1985)

1. Introduction. In this note we outline the main results of a forth-
coming paper [4]. Throughout we suppose that ,u is an arbitrary measure,
lpc, and Y is a subspace of LP(p). An invertible operator V e _(Y)
will be called power-bounded provided supezllVnllc, where Z denotes
the additive group of integers. We show that (V)=_ is automatically
the Fourier-Stieltjes transform of a spectral amily o projections concen-
trated on [0, 2z] (see [1, 2] or definitions and the. Riemann-Stieltjes inte-
gration theory o spectral families). We deduce that every bounded, one-
parameter group on Y is the Fourier-Stieltjes transform of a spectral family
of projections E(.)" R-.(X). This result generalizes work in [2], [8], and
can be used to obtain a complete analogue for LP(j/) of Helson’s corre-
spondence [10, 2.3] between cocycles and the normalized, simply invariant
subspaces of L2(), where is a compact abelian group with archimedean
ordered dual. In particular, in L(J0 every such invariant subspace is
the range of a bounded projection.

2. Abstract results. An operator U on a Banach space X is called
trigonometrically well-bounded [3] provided

U o, edE(2)

for a spectral family of projections E(.)’R--._(X) such that the strong
left-hand limits E(0-), E((2z)-) are 0, I, respectively. E(.) is necessarily
unique, and will be. called the spectral decomposition of U. Let BV(T) be
the Banach algebra of complex-valued functions having bounded variation
on the unit circle. For f e BV(T) put

Fl(t)-- lim f(eS), F2(t)-- lim f(e)
8-t+ s-,t-

for t e R, and let f be the Fourier transform of f.
(2.1) Theorem. Let U e2(X) be trigonometrically well-bounded and
power-bounded, and suppose f e BV(T). Then -,n___Nf(n)U converges in
the strong operator topology, as N-+ oo, to

2- (F+F)dE,
where E(.) is the spectral decomposition of U.

Proof. ForteR, xeX, let
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(2.2) q(t)x--o, f(ete)dE(2)x’
and put

(n) (2n)- e-ntO(t)xdt

for n e Z. If we replace O(t)x in the second integral by the right of (2.2)
and interchange the order of integration, we obtain (n)x=f(n)Ux. This
step requires further justification, however, since E(.) is not given by a
measure. By [6, Lemma 17.2 and proof of 17.4] the approximating sums
for the integral in (2.2) converge uniformly in t, and this fact legitimizes
the foregoing argument. The vector-valued versions o Fejr’s Theorem
and a standard Tauberian theorem of Hardy [11, Theorems 1.3.1, II.2.2]
together with [6, Theorem 17.5] can now lse applied to q(t)x at t=0 to. give
the conclusio.n of (2.1) readily.

Henceforth the co.nvergence of a series .=_ u will signify that of
the "balanced" partial sums, =-Un, and I" Ir will denote the nerm of
BV(T).
(2.3) Corollary. Under the hypotheses of Theorem (2.1):

( ) there is a constant C such that
(2.4) II,n=-f(n)Vn]]__ev flit, for N_O, f e BV(T)

(ii) for 0_2, x e X,
(2.5) E()x==_(k)Ux+lim (2n) =0 e U x

+lim (2n)- ?,;0 Ux,
where g e BV(T) is the characteristic function of {et Ot,2}.

Proof. Standard considerations with the Fourier series of (t)x show
that , (1--,k[ )f(k)U’x--(2)-’:’K,(t)q(t)xdt,=-n n+l
where {K} is Fejr’s kernel. Since f e BV(T), If(/)l<_(2lkl)- var (f, T),
for k:h0. The conclusion in (2.4) is immediate from these facts and appli-
cation o [1, Proposition (2.3)] to (2.2). By Theorem (2.1) the series on the
right of (2.5) is 2-’{E(2-)+E()--E(O)}x. The functional calculus described
in [1, Proposition (2.3)] can be used to show that the second term in (2.5)
is 2-{E(2)--E(-)}x. We omit the details.

:}. Spectral decomposition oi power,bounded operators on Y.
Throughout this section V will denote a power-bounded operator on the
subspace Y of L(y), as set orth in 1. We put C=SUPnez VII
(3.1) Transference lemma. For any trigonometric polynomial

Q(z)-?,=_,az(z e T), IQ(V)II<_cIIQ I,,
where IIQII,, is the L(Z)-multiplier norm of Q.

Proof. The demonstratio.n is a special case, for the group Z and the
representation nVn, of the proof in [5, Theorem 2.4].
(3.2) Theorem. V is trigonometrically well-bounded, and

sup {II E()II: e R} <_ Apc,
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where E(.) is the spectral decomposition of V, and A is a constant depend-
ing only on p.

Proof. Application of SteSkin’s Theorem [7, Thevrem 6.4.4] to Theo-
rem (3.1) shows that V has a continuous AC(T)-functional calculus, where
AC(T) is the subalgebra of BV(T) consisting of all absolutely continuous
functions. By [3, Theorem 2.3], V is trigonometrically well-bounded, and
sup {[[E()II e R}<_3cc, where is the constant of SteSkin’s Theorem.
(3.3) Corollary. For f e BV(T), I],=_f(n)Vn[[<_c211 f Ip, p.

Proof. Let a(f, V) be the N Cesro mean for ___f(n)Vn, and put
V=K.f Thus a(f, V)=Qz(V), and so liar(f, V)ll_cl]Q]lp,<_c]lfl],p.
Let N--+ and apply Theorem (2.1).
(3.4) Corollary. V has a logarithm belonging to .(Y).
(3.5) Corollary. Every hermitian-equivalent operator T on Y is well-
bounded.

Proof. The hypothesis (see [6, p. 108]) is that er is power-bounded.
Theorem (3.2) and the proof in [6, Theorem 20.28] now give the conclusion.

Remarks. (i) Theorem (3.2) generalizes theorems in [9] and [12] con-
cerning translation operators. (ii) If Y is replaced by an arbitrary reflexive
space, the first assertion in Theorem (3.2), as well as Corollary (3.4), fails
[4, (5.1), (5.4)].
(3.6) Theorem. If (Vt}, t e R, is a strongly continuous, one-parameter
group of operators on Y such that suPteR]lVtllKoo, then there is a unique
spectral family E(.) of projections in Y such that

V,y- lim [ e*dE()y, for y e Y, t e R.

Moreover, (Vt t R} and (E() e R} have the same commutants.
Proof. By Theorem (3.2), (Vt} satisfies the hypotheses of [1, Theorem

(4.20)].
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