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0. The. purpose, of this note is to present the Poincar lemma for a
variation o.f Ho.dge structure. The result was first proved in a pioneering
work of Zucker ([4]) in the one-dimensional case. Cattani and Kaplan [1]
has recently announced a generalization in the case of dimension 2 and
weight 1.

Our main result (Theorem 1) shows the coincidence o the intersection
cohomology groups and the L-cohomology groups associated with a varia-
tion o.f Hodge structure in higher dimensional case., thus generalizing the
Poincar lemma due to Zucker to the higher dimensional case.. Note,
however, that the holomorphic Poincar lemma in the sense of [4] does not
hold in the higher dimensional case. (See [1].) The proof of Theorem 1
is based on an algebraic result (Thevrem 2), which is announced by Cattani
and Kaplan [1] in the two-dimensional case.

1o Let X be an n-dimensional complex manifold, Y a normally cross-
ing hypersurface and (Hz, F, S) a variation of polarized Hodge structure
o.f weight w over X\Y, that is, Hz is a local system on X\Y, S is a non-
degenerate bilinear form on Hq and F is a finite, filtration of (C)z\r(R)Hz by
holomorphic vector bundles such that at any point x in X\Y the stalk of

(Hz, F, S)gives a polarized Hodge structure, and vFcF- for any holo-
morphic vector field v and any p. Then H gives a C-vector bundle on

X\Y with the Hermitian metric given by the polarization.
2. Let us take a Riemannian metric g on X\Y which behaves on a

neighborhood of Y as follows:
For any point Y0 o.f Y let us take a local coordinate system (z, ..., z)

such that Y is defined by z...z=0. Then we assume
dzjdjg j_ (Izjl log Izl)

+
J>’ dzjd.

Here means that each of the two metrics is bounded by a constant
multiple of the other on a neighborhood of Y0. One can easily show (see
[4]) that such a metric exists. If X is a Kihler manifold, we can choose
a Khler metric as g.

3. Let us define the sheaf _q)$(H) on X as follows:
For any open set U of X, F(U, t,(H)) is the. set of distribution-valued

p-forms with coefficients in H defined on U\ Y.
We also. define the subsheaf _L’(H)() of $(H) as follows:
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For any open set U of X, F(U, _L’(H)()) is the set of u e F(U\ Y, [’(H))
such that for any compact set K of U, both u and du are square-integrable
on K. Here d denotes the exterior derivative .[’(H)---I/(H). The L2-
norm is defined, of course, by the Riemannian metric g on X and the
Hermitian metric on the C-vector bundle H. Therefore if X is compact,
ehen

F(X;.F(H)())-{u;a distribution-valued p-form with coefficients in
H such that u and du are square-integrable on XY}.

It is clear that {2$(H)}ez forms a complex by the exterior derivative and
{(H)()} forms its subcomplex.

4. Let us denote by "Hc, the minimal extension of Hc=C@zHz. This
means that Hc is a perverse co.mplex on X such that its restriction to XY
coincides with Hc and that there exists neither non-zero quotient nor sub-
object of "Hc (in the category of perverse complexes) having its support
in Y. Denoting by x the sheaf of linear differential operators on X, let
us take a regular holonomic x-module such that its restriction to XY
coincides with Gxr@Hc and that there exists neither non-zero coherent
quotient nor submodule of having its support in Y. Then we have

"Hc:Ro(Ox, ).
Our main result is the following theorem.

Theorem 1. (i) ’(H)() is quasi-isomorphic to H.
(ii) H(X ’(H)())=H(X; "H).

Of course, (ii) is an immediate consequence of (i).
5. Outline of the proof of Theorem 1. The question being local, we

consider the case where XY is the product of n punctured discs. We
may urther assume, that the monodromy of H around {za=0} is unipotent.
We denote its logarithm by Na. Now, by the coordinate transformation

z:exp (ixa- tya),
XY is isomorphic to

Z:{(t, x, y) e R+ (R/Z)nR OtI, y=l}
and the metric g is equivalent to

dV( 1 )
t + t2(E yldxl)+E dy

Y
.Let Vto be the Riemannian manifold

{(t, x, y) e z; t=t0}
equipped with the metric

t( ydx)+ "y y

and denote V/ by V. We trivialize the vector bundle H so that we have
( 2 ) de= Ne@dx.
Let us choose K e End (H) such that [K,N]=--2N and K}=k. Here
gr denotes the graduation of the weight filtration W=W(N,...,N)
determined by N’s. Then we have ([2], [3])

Here ]*]z (resp., ],]) denotes the Hermitian metric on Hlz (resp., HI,) at
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(t, X, y) (resp., (x, y)).
To employ the harmonic analysis on V we do. some preliminary con-

sideration on harmonic forms on V. Let I denote the. eigenspace of K
with eigenvalue k. We may, and do., suppose that the Hermitian metric
on H is chosen so that (R) I gives rise to. an o.rthogonal decomposition of H.

Definition 1. For an H-valued form u, Au is, by definition, (K+2p)u,
where p denotes the degree of u with respect to dx, ..., dx,..

Then, for an H-valued form u,

Ilul --.[ It-/=ul= dye.

Here dyz denotes he volume element o,f Z. We can now show the following
Lemma 1. Let h be a harmonie Lorm on V. Then Ah ie also

harmonic.
We now proceed by the induction on n. Then the q-th L-cohomology

group H=)(V H) coincides with the intersection co.homology group H(V
=HI). In particular, we have the following

Lemma 2. H(V;HIv) coincides with the space of H-valued L-harmonic q-forms on V.
Furthermore we can prove the following

Lemma 3. The eigenvalue of A in H(V =H]) is strictly greater than
n for q=n and strictly less than n for qn.

This lemma is a consequence of Theorem 2 in the. next paragraph.
By Lemma 2 and Lemma 3 the proof o.f Theorem 1 is completed if we

show that the q-th cohomology group of square integrable forms on Z coin-
cides with H(V;HI,) for q<n and vanishes for q>=n. To perform this
we prove the following Lemma 4 by the harmonic analysis on Vt and a
subtle choice o.f partition of unity in the t-space.

Lemma 4. Let w be a closed L-form on Z. Then we can find h(t)
and h(t) which are harmonic forms on Vt satisfying the following four
conditions"
(4) w-(h(t)+h(t)dt/t) is the coboundary of an L-form on Z,
( 5 ) 3h(t)/3t O,
(6) h(t) is an L-form on V,
(7) h(t)dt/t is an L-form on Z.

By Hardy’s inequality, we can find a square-integrable harmonic orm
H such that t3H/3t=h. Furthermore the square-integrability condition
implies h-0 for q>=n. Hence the q-th cohomology group of square-
integrable forms on Z coincides with H(V;HI,) or qn and vanishes
for q>n. This completes the proof of Theorem 1.

6. Let Im N,. N be endowed with the quotient mixed Hodge struc-
ture of H given by the weight filtration W(N, ..., N). Let II(N, ..., Nn)
be the following partial Koszul complex

H N;@ImN N%@ImNN ;... ;ImN...N.
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Then this is a cmplex in the category of mixed Kodge structures, and its
k-th cohomology group H(H(N, ..., N)) coincides with the germ of H(H)
at the origin. Furthermore we have. the following

Theorem 2. The weight of H(II(N1, ..., N)) is equal o or less than

[1]
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