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A Formula of Eigenfunction Expansions II.

Exterior Dirichlet Problem in a Lattice

By Kazuhiko Aooo
Department of Mathematics, Nagoya University

(Communicated by Kunihiko KODtIRA, M. ..., June 11, 1985)

We apply the method used in my previous note to exterior Dirichlet
problems in a lattice. It is shown there is no point spectrum.

1. Let F be a free abelian group with g generators a, ..., a and A0
be a self-adjoint bounded linear operator on l(F) described by a symmetric
stochastic walk on F"

(1.1) A0uff)-- pt(uffa,)+
i=1

Let A be the restriction of A0 on l(F 9) corresponding to the. exterior
Dirichlet problem outside a finite subset tO. Physically this corresponds
to. a random walk with traps tO (see [5]). The Green function or A0 is
described by the Fourier integral formula

(1.2) G0ff, "] z) 1 W-m’+mi’.. Wg+; dwl A" / dw

for ’=a’...ag and "=a...a where z e C--[--1, 1]. The integral de.-
pends only on [m,--ml,..., [m--m’[.

Let Sg- be the unit sphere of dimension g--1 and Sq-’(e, ., ) be
the quadrant of S- consisting of points (, ..., )e Sq-’ such that
0,...,qSq0 for e=_+l. We denote by V the analytic hypersurface
(so called complex Fermi hypersurface) in (C*) defined by

(1.3) F(z, o, o- l) z-- ,
For a given direction at infinity =(, ..., q) e Sq-’(el, ..., e) consider the
following equation with respect to the variables o=exp (rL-0) which is
the inverse of the Gauss map from V: to S-:

(1.4) 1 F( 8F)=_-o. =jp, l =]=g

for an unknown p. This has the following solution (-)---(()1, ", Og)e VZ
(1.5) @----- --JP+ /(PJ) -+- 4p.

2p
where p denotes the unique solution of the equation

(1.6) , /.+4p.--- z for --j=l

such that p>0 for z> 1.
By saddle point method and Lagrangean analysis for the Hamiltonian

I ,[ m. log in the Khler manifold V, ([1]), we can prove
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Proposition 1. We assume ze [-1, 1]. We fix --(, ..., q) eSg-1

such that ...=/=0. When the ratio m’... "m’q converges to ’... "at the infinity in the sense that for any i=/=],
(1.7) lim m/m$/,,

then the Green function Go(, y’]z) has the asymptotic behaviour in the
direction

(1 8) Go(e, y’] z)-( 2rP= )-. {= p(&l__&) .}-I
p(&]l+&) " for r=m+ +mj

j= j=

and the basic eigenfunction Ko(Y, { z) has the simple form
(1.9) K0(r, ]z)=lim 60(, r’]z) (&)_.

’ Go(e, y’ z)
The behaviour of G0(, y’]z) along [-1, 1] is more or less known and

follows from its monodromic property obtained from the standard tech-
nique of Picard-Lefschetz transformations and Gauss-Manin systems
(sometimes called holonomic systems) (see [5]). The result is as follows.

Lemma 1. Assume that p,+... +qpq are different from each other

for = 1. In each domain Iz0 or Iz0, the function Go(r, r’lz) is
holomorphically extendable along [-1, 1]- {2p, 2pq} and has the
singularities at z=2pl+... +2pq, =1.

(1.10) G0(r, y’{z) (-1)(9-)- C(, .-., q)(z-2p 2pqq)(-)/
j=l

+ t: (Y, Y’), for g odd and

(1.11) (-1)(-).C(, ..., q)(z-2p 2pqeq)
j=l

log (z--2p 2pqq)+ t:(, Y’), for g even
according as z2p+ +2pqq iO. Here C(,. ., ) denotes the constant

(1.12) (--1) (q-)/ {or (--1)q/}.F((1/2)g)
,"’pp pq=( q- )/F(g / 2)

according as g is odd or even, and t:(, Y’) are also constants.
2. It is well-known that the Green function G(,y’{z)=(z-A):, for

y, y’ e F--9 can be described as follows"
(2.1) G(r, r’ z)= Go(r, r’ z)- Go(r, z)H(, ’ z)Go(’,

where (H(w, w’]z)),,e, denotes the inverse of the Tceplitz matrix
(G0(w, w’{z)),,e, o order 9], the number of elements of 9. For z e C-
[-1, 1], T, is invertible. In fact, the symmetric bilinear orm
(2.2) (u, v)= G0(w,

on 1(9) has the definite real part for zl or z--1 and the definite imagi-
nary part for Iz0. For e Sq- such that ...0, we have the formula
or the transmission coefficient a(]z)"

1 --lim G(e, r’{z) =1- Go(e, ]z)H(, w’]z)Ko(w’,(2.3) a(z) r,- Go(e, y’]z)
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and the basic eigenfunction
(2.4) K(, ’[z)=(’[z){KoO’, ’lz)-- Go(, o z)H(o, o’ z)K0(o’, ’[z)}.
The asymptotic behaviour of K0", ’[z) is as follows. Fr
(2.5) K(, ’lz) a( z)[Ko0", ’lz) + fl(, ’]z)ao(Y, e lz)]
where fl(, ’lz) denotes the scattering operator on S-:
(2.6) fl($, ’lz) K0((o, lz)H((o, (o’lz)Ko(o’, ’lz).

Hence the determinant S(z) of the. matrix T, plays the crucial role in
the behaviour of G0", "lz) and fl(, ’lz) ([3]). We denote by T the matrix
of order 19] with entries t’(’, ") for ’, "e 2. Then

Lemma 2. (i) T,(2+_iO) is invertible for all [-1, 1] if g_3.
(ii) Assume g=2 and 2=2pll+2p22, with 1, e2=+_1. We denote by

T() the matrix of order I1 with entries (-1)(I-1)/-) for (m, m2),
(m, m) e [2. Then the polynomial of h
(2.7) det (T(> + hT)= hI1 det T+ h191.1. z/l(T, T())
does not vanish identically.

As an immediate consequence of it, we have
Proposition 2. We fix e [--1, 1].
i) If g_3, then S(2+__iO) exists and is different from zero.

ii) If g=2, then S(2+_iO) exists and is different from zero for :/:
2p+_2p2. Near 2=2p+2p22, we have
(2.8) S(z) Co log (z 2p1 2p.2) -- C,such that Co or C is different from zero.

This gives us the following conclusion"
Theorem 1. G(7, 7’l z) is holomorphic outside [-1, 1] and has no poles

along [--1, 1] in Iz_0 or Iz0. The operator A has no point spectrum.
This is a difference analogue of the classical Rellich Theorem ([6]).
:. Let be the compactification of F with the boundary S-’. Let

be a cone in F with summit e and be its closure in /. The density
matrix z(dl) is a Radon measure on S-’ such that

(3.1) lim G(0, "1+i) 2= [ /(d 12).
0 ’ JS-I

We compute the left hand side for a special infinitesimal cone.
Because of symmetry property of GO’, "lz) we have only to compute

z(dl) in the direction such that 0, ..., qO. We choose positive
numbers a, b,2_]<:g such that b--a are very small. We denote by
[a., ..., aq b2, ..., bq] a small cvne in F consisting of elements "=a?i.
a such that a_m/m_b, 2_]_g. Since G(e, ’lz) has no poles along

[-- 1, 1], we have

(3.2) lim -- G(e, "1 +i)I= O.
t0 7

Hence in view of (1.8) and (2.3)

(3.3) lim G(e, " +i)
7 ’[a,...,a;b,...,b]



160 K. AOMOTO [Vol. 61 (A),

1 lim E Go(e, "!2+ iS)]
I(l+i0)] ,0 =,,:,...,;,...,

for arbitrary e S- such that .ag/gb.
(1.8), (3.3) and an elementary computation imply

(3.4) z(d[)_ 1 dA...Adq ]
(2) =+4p ]a([2+i0)

because

through the substitution 5=p. This enables us to give
Definition. The Radon measure p(d2) on Sq- or 2[--1,1] is

defined by (3.5) on the image o from the real Fermi hypersurfaee V R
and vanishes elsewhere. This is identified with the canonical form on

VR by :

(3.5) ,*p(d,2)= 1 [dOiA...AdOq] /](.2+i0)[.
The ormula of eigenfuncion expansion can be stated as follows ([3]):

Theorem 2. The spectral kernel d#(L V’[2) is absolutely continuous for
2 e [--1, 1] and has the expression
(3.6) dO(r, V]) K(r, +iO)K(r’, ]-iO). z(d] )d.

The support o.f p(d[ 2) coincides with the image o.f the Gauss map x

from V R. Morse Theory shows that is not necessarily bijective unless

max (1--4p)([2[1.
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