39. Polynomial Difference Equations which have Entire Solutions of Finite Order

By Yoshikuni Nakamura
Mathematics Institute, College of Arts and Sciences, Chiba University
(Communicated by Kôsaku Yosida, m. J. A., May 13, 1985)

1. Introduction. Here we consider the difference equation
(1.1) $\quad y(x+1)^{m}=a_{p} y(x)^{p}+a_{p-1} y(x)^{p-1}+\cdots+a_{1} y(x)+a_{0}$,
where $a_{p}, a_{p-1}, \cdots, a_{1}, a_{0}$ are constants, $a_{p} \neq 0$.
When $m=1$, the equation (1.1) has been studied by several authors [1], [4], [5]. We consider here mainly the case $m \geqq 2$.

We proved in [2] the following theorem.
Theorem A. Let $R_{j}(x, w), j=0,1$, be rational functions :

$$
\begin{aligned}
& R_{j}(x, w)=P_{j}(x, w) / Q_{j}(x, w) \\
& P_{j}(x, w)=a_{p_{j}}^{(j)}(x) w^{p_{j}}+\cdots+a_{0}^{(j)}(x) \\
& Q_{j}(x, w)=b_{q_{j}}^{(j)}(x) w^{q_{j}}+\cdots+b_{0}^{(j)}(x)
\end{aligned}
$$

in which $a_{k}^{(j)}(x)$ and $b_{h}^{(j)}(x), k=0, \cdots, p_{j}, h=0, \cdots, q_{j}, j=0,1$, are polynomials, $a_{p_{j}}^{(j)}(x) b_{q_{j}}^{(j)}(x) \not \equiv 0$. Consider the difference equation

$$
\begin{equation*}
R_{1}(x, y(X+1))=R_{0}(x, y(x)) \tag{1.2}
\end{equation*}
$$

Suppose (1.2) possesses a meromorphic solution $y(x)$, which is of finite order. Then, either $y(x)$ is rational, or there holds

$$
\max \left(p_{1}, q_{1}\right)=\max \left(p_{0}, q_{0}\right)
$$

By this theorem, we know that the equation (1.1) admits a meromorphic solution of finite order only if

$$
m=p
$$

In particular, when $m=1$, it is easy to see that (1.1) admits an entire solution of finite order if $p=1$. Our aim in this note is to determine the form of the equations (1.1) which have entire solutions of finite order, when $m \geqq 2$. Our results are as follows.

Theorem 1. The equation (1.1) possesses an entire nontrivial solution of finite order if and only if it is either of the form
(1.3) $\quad m$ is even and $y(x+1)^{m}=\left(A^{2}-y(x)^{2}\right)^{m / 2}, A \neq 0$,
i.e.,

$$
\begin{gather*}
y(x+1)^{2}=A^{2}-y(x)^{2} \tag{1.3'}\\
y(x+1)^{m}=(a y(x)+b)^{m}
\end{gather*}
$$

or of the form
(1.4)

By the way, we note that the equation (1.3) is satisfied by

$$
y(x)=A \sin (\pi x / 2) \quad \text { and } \quad y(x)=A \cos (\pi x / 2)
$$

The proof of Theorem 1 is implied in the following lemmas.
Lemma 2. The equation (1.1) can not have an entire nontrivial solu-
tion if $m=p \geqq 3$, unless it is either of the form

$$
\begin{equation*}
y(x+1)^{m}=(a y(x)+b)^{m} \tag{1.5}
\end{equation*}
$$

or of the form
(1.5') $\quad m$ is even and $y(x+1)^{m}=A\left(y(x)-c_{1}\right)^{m / 2}\left(y(x)-c_{2}\right)^{m / 2}$.

The equation of the form (1.5) is nothing but the one with $m=2$.
Lemma 3. Consider the equation (1.1) with $m=p=2$, which has an entire solution. If it is not of the form (1.4), then we have that

$$
a_{2}=-1 \quad \text { and } \quad a_{1}=0
$$

2. Proof of Lemma 2. At first we remark that, if $y(x)$ is entire, then $y(x)$ can possess totally ramified values at most two [3, p. 277].

Suppose

$$
\begin{align*}
& y(x+1)^{m}=A\left(y(x)-c_{1}\right)^{p_{1}} \cdots\left(y(x)-c_{k}\right)^{p_{k}}, \quad c_{j} \neq c_{h} \text { if } j \neq h, \tag{2.1}\\
& p_{1}+\cdots+p_{k}=m .
\end{align*}
$$

Write $q_{j}=$ G.C.D. $\left(m, p_{j}\right)$. By (2.1) we see that $y(x)$ is ramified over c_{j} to the order at least $m / q_{j} \geqq 2$. By the remark at the head of this section, we must have that $k \leqq 2$.

When $k=2$, we see by [3, p. 277] that

$$
\left(1-q_{1} / m\right)+\left(1-q_{2} / m\right) \leqq 1, \quad q_{j} / m \leqq 1 / 2
$$

Hence the equation (2.1) must be of the form (1.5').
When $k=1$, the equation (2.1) is of the form (1.5).
Q.E.D.
3. Proof of Lemma 3. Suppose

$$
\begin{align*}
y(x+1)^{2} & =a_{2} y(x)^{2}+a_{1} y(x)+a_{0} \tag{3.1}\\
& =a_{2}\left(y(x)-c_{1}\right)\left(y(x)-c_{2}\right) .
\end{align*}
$$

If $c_{1}=c_{2}$, then (3.1) is of the form (1.4) with $m=2$.
If $c_{1} \neq c_{2}$, then

$$
\begin{gather*}
a_{0}-a_{1}^{2} /\left(4 a_{2}\right)=D \neq 0 . \tag{3.2}\\
y\left(x_{0}+1\right)^{2}=D . \tag{3.3}
\end{gather*}
$$

Then by (3.1) we get $y\left(x_{0}\right)=-a_{1} /\left(2 a_{2}\right)$. Differentiating (3.1), we obtain (3.4) $\quad 2 a_{2} y(x) y^{\prime}(x)+a_{1} y^{\prime}(x)-2 y(x+1) y^{\prime}(x+1)=0$.

By (3.3) and (3.4), we get $y^{\prime}\left(x_{0}+1\right)=0$, since $y\left(x_{0}+1\right)^{2}=D \neq 0$. Therefore $y(x)$ is ramified over $\pm \sqrt{D}$. Since $y(x)$ is also ramified over c_{1} and c_{2}, we must have that

$$
\left(c_{1}, c_{2}\right)=(\sqrt{D},-\sqrt{D})
$$

Hence we have

$$
a_{1}=c_{1}+c_{2}=\sqrt{D}-\sqrt{D}=0
$$

Then

$$
\begin{equation*}
y(x+1)^{2}=a_{2} y(x)^{2}+a_{0} . \tag{3.5}
\end{equation*}
$$

By (3.5), we see that $y(x)$ is totally ramified over $\pm \sqrt{-a_{0} / a_{2}}$, and $y(x+1)$ is so over $\pm \sqrt{a_{0}}$. Therefore we get

$$
-a_{0} / a_{2}=a_{0}, \quad \text { i.e., } \quad a_{2}=-1
$$

which proves our lemma.

References

[1] T. Kimura: On the iteration of analytic functions. Funkcial. Ekvac., 14, 197238 (1971).
[2] Y. Nakamura: On the order of meromorphic solutions of some difference equations. Jour. Coll. Arts \& Sci., Chiba Univ. (to appear).
[3] R. Nevanlinna: Analytic Functions. Springer-Verlag, Berlin-Heidelberg-New York (1975).
[4] S. Shimomura: Entire solutions of a polynomial difference equation. J. Fac. Sci., Univ. Tokyo, Sec. IA Math., 28, 253-266 (1981).
[5] N. Yanagihara: Meromorphic solutions of some difference equations. Funkcial. Ekvac., 55, 309-326 (1980).

