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1o Introduction. Here we consider the difference equatio.n
(1.1) y(x+1)=ay(x) +a_y(x)-+ +ay(x)+ao,
where .a, a_, ., a, a0 are constants, a :/:0.

When re=l, the equation (1.1) has been studied by several authors
[1], [4], [5]. We consider here mainly the case m2.

We proved in [2] the following theorem.
Theorem A. Let R(x, w), ]=0, 1, be rational functions"

R(x, w) P(x, w) / Q(x, w),
P(x, w)=a()(x)w+ +aY)(x),
Q(x, w)=h()(x)wq+ + b(o)(x)

in which .a(J)(x) and b(J)(x), k--0, ..., pj, h=0, ..., qj, ]=0, 1, are polyno-
mials, a)(x)h(J)(x)O.vqj Consider the difference equation
(1.2) R(x, y(X+ 1))-- Ro(x, y(x)).
Suppose (1.2) possesses a meromorphic solution y(x), which is of finite
order. Then, either y(x) is rational, or there holds

max (p, q)=max (P0, qo).
By this theorem, we. know that the equation (1.1) admits a mero-

morphic solution of finite order only if

In particular, when m= 1, it is easy to see that (1.1) admits an entire
solution o.f finite order if p=l. Our aim in this note is to determine the
form of the equations (1.1) which have entire solutions o.f finite order, when
m>_2. Our results are as follows.

Theorem 1. The equation (1.1) possesses an entire nontrivial solution
of finite order if and only if it is either of the form
(1.3) m is even and y(x+ 1)=(AZ-y(x)Z)/, A:/:O,
i.e.,
(1.3’) y(x+ 1)2-- A2-- y(x)2,
or of the form
(1.4) y(x+1)= (ay(x) + b).

By the way, we note that the equation (1.3) is satisfied by
y(x)-A sin(x/2) and y(x)=A cos (x/2).

The proof of Theorem 1 is implied in the following lemmas.
Lemma 2. The equation (1.1) can not have an entire nontrivial solu-
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tion if m=p>=3, unless it is either of the form
(1.5) y(x+1)= (ay(x)+ b),
or of the form
(1.5’) m is even and y(x

The equation of the form (1.59 is no,thing but the one with m-2.
Lemma 3. Consider the equation (1.1) with re=p---2, which has an

entire solution. If it is not of the form (1.4), then we have that
a2------1 and a O.

2, Proof of Lemma 2, At first we. remark that, if y(x) is entire,
then y(x) can possess totally ramified valuesat most two [3, p. 277].

Suppose
(2.1) y(x+l)--A(y(x)-c).. .(y(x)-c), c:/:c if ]:/::h,

p+. .+p=m.
Write q=G.C.D. (m, p). By (2.1) we see that y(x) is ramified over

c to the order at least m/q>2. By the remark at the head of this sec-
tion, we must have that k<2.

When k=2, we see by [3, p. 277] that
(1--q,/m)+(1--q/m)<l, q/m<l/2.

Hence the equation (2.1) must be of the form (1.59.
When k= 1, the equation (2.1) is of the form (1.5). Q.E.D.
3. Proof of Lemma 3. Suppose

(3.1) y(x
--a.(y(x) c)(y(x) c).

If. c=c., then (3.1) is of the form (1.4) with m=2.
If c :/: c, then

(3.2) ao-- a/(4.a) D =/= 0.
Suppose for an x0
(3.3) y(Xo-4-1)= D.
Then by (3.1) we. get y(x0)=--a/(2a). Differentiating (3.1), we obtain
(3.4) 2ay(x)y’(x) -4- ay’(x) 2y(x-4-1)y’(x+ 1) 0.
By (3.3) and (3.4), we get y’(x0+l)=0, since y(xo+l)=D:#O. Therefore
y(x) is ramified over +_ /D. Since y(x) is also. ramified over c and c, we
must have that

(c, c)=(/, /D ).
Hence we have

a=c+c2= J----/ D =0.
Then
(3.5) y(x+ 1y=a2y(xY+ ao.
By (3.5), we see that y(x) is totally ramified over -4-4’-ao/a, and y(x+l)
is so over /-0. Therefore we. get

--ao/a.=ao, i.e., a=--1,
which proves our Iemma.
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