36. Fourier Transform of a Space of Holomorphic Discrete Series

By Takaaki Nomura
Department of Mathematics, Kyoto University
(Communicated by Kôsaku Yosida, M. J. A., May 13, 1985)

1. Let G be a connected non-compact real simple Lie group of matrices and K a maximal compact subgroup of G. Assume G / K is a hermitian symmetric space. Then, G / K can be realized as a Siegel domain D of type II. Let \mathfrak{h} be a Cartan subalgebra of $g=$ Lie G contained in $\mathfrak{f}=$ Lie K, Δ the root system of $\left(g_{c}, \mathfrak{h}_{c}\right)$. We introduce an order in Δ compatible with the complex structure of G / K. For each K-dominant K-integral linear form Λ on \mathfrak{h}_{c} satisfying Harish-Chandra's non-vanishing condition [1, p. 612], the holomorphic discrete series Π_{Δ} of G is realized on a Hilbert space $\mathcal{H}(\Lambda)$ (see 5) of vector valued holomorphic functions on D. Let $S(D)$ be the Šilov boundary of D. Then, one knows that $S(D)$ is diffeomorphic to a certain nilpotent subgroup $N(D)$ of the affine automorphisms of D. By identifying $S(D)$ with $N(D)$, the aim of this note is a description of the space $\mathscr{H}(\Lambda)$ by using the Fourier transform on $N(D)$. If D reduces to a tube domain, $N(D)$ is abelian. Since such a description in this case is found in [6], we assume from now on that D does not reduce to a tube domain. Then, $N(D)$ is a simply connected 2 -step nilpotent Lie group.
2. Let $\mathfrak{g}=\mathfrak{f}+\mathfrak{p}$ be a Cartan decomposition of \mathfrak{g} and \mathfrak{p}_{+}(resp. \mathfrak{p}_{-}) the sum of all root subspaces corresponding to positive (resp. negative) noncompact roots in Δ. $\mathfrak{p}_{ \pm}$are abelian subalgebras of g_{c} normalized by \mathfrak{f}_{c}. Let $P_{ \pm}$and K_{c} be analytic subgroups of $G_{c}\left(\operatorname{Lie} G_{c}=g_{c}\right)$ corresponding to $\mathfrak{p}_{ \pm}$and \mathfrak{f}_{C} respectively. Every $x \in P_{+} K_{C} P_{-}$can be expressed in a unique way as $x=\exp \zeta_{+} \cdot k(x) \cdot \exp \zeta_{-}$with $\zeta_{ \pm} \in \mathfrak{p}_{ \pm}, k(x) \in K_{C}$. We know that G is contained in $P_{+} K_{c} P_{-}$. Let $\left\{\gamma_{1}, \cdots, \gamma_{l}\right\}$ be a maximal system of positive noncompact strongly orthogonal roots such that for each j, r_{j} is the largest positive non-compact root strongly orthogonal to $\gamma_{j+1}, \cdots, \gamma_{l}$. For every $\alpha \in \Delta$, we choose $X_{\alpha} \in \mathrm{g}_{\alpha}$ as in Lemma 3.1 in [2, p. 257]. Then,

$$
\mathfrak{a}=\sum_{1 \leqq i \leqq l} \mathbf{R}\left(X_{r_{i}}+X_{-r_{i}}\right)
$$

is a maximal abelian subspace of \mathfrak{p} with $l=$ real rank of G. Let

$$
\begin{equation*}
c=\exp \pi \sum_{1 \leq j \leq l}\left(X_{r_{j}}-X_{-r_{j}}\right) / 4 \in P_{+} K_{C} P_{-} \tag{1}
\end{equation*}
$$

and $\nu=\operatorname{Ad} c$. As we are assuming that G / K does not reduce to a tube domain, there is only one possibility of positive \mathfrak{a}-root system $\Phi(\mathfrak{a})^{+}$compatible with the original order in Δ through $\nu^{*}\left[3\right.$, p. 364]: put $2 \lambda_{j}=\nu^{*}\left(\gamma_{j}\right)$, then

$$
\Phi(\mathfrak{a})^{+}=\left\{\lambda_{i}+\lambda_{j} ; 1 \leqq j \leqq i \leqq l\right\} \cup\left\{\lambda_{i}-\lambda_{j} ; 1 \leqq j<i \leqq l\right\} \cup\left\{\lambda_{i} ; 1 \leqq i \leqq l\right\} .
$$

We denote by \mathfrak{n} the sum of all positive \mathfrak{a}-root subspaces and put $\mathfrak{z}=\mathfrak{a}+\mathfrak{n}$. Let j be the complex structure on \mathfrak{B} obtained by transforming the complex structure on \mathfrak{p}. We set

$$
\mathfrak{\xi}(0)=\mathfrak{a}+\sum_{k<m} \mathfrak{n}_{\lambda_{m}-\lambda_{k}}, \quad \mathfrak{\xi}(1 / 2)=\sum_{1 \leq k \leq 1} \mathfrak{n}_{\lambda_{k}}, \quad \mathfrak{g}(1)=\sum_{k \leq m} \mathfrak{n}_{\lambda_{m}+\lambda_{k}} .
$$

Then, $\mathfrak{z}=\mathfrak{z}(0)+\mathfrak{\xi}(1 / 2)+\mathfrak{z}(1)$ and $\mathfrak{\xi}(0)$ is a subalgebra of g. Let $S(0)$ be the analytic subgroup of G corresponding to $\mathcal{S}(0)$. Choose $s \in \mathcal{\xi}(1)$ as in [7, p. 15] and let Ω be the $S(0)$-orbit of s in $\mathfrak{Z (1)}$ under the adjoint representation. By [6, Theorem 4.15], Ω is a regular open convex cone in $\xi(1)$ and diffeomorphic to $S(0)$. For every $t \in \Omega$, we denote by $\eta_{0}(t)$ the unique element in $S(0)$ for which $\left(\operatorname{Ad} \eta_{0}(t)\right) s=t$. On the other hand, it is known that $\xi(1 / 2)$ can be considered as a complex vector space V by $\left.j\right|_{s(1 / 2)}$. Put $W=\xi(1)_{c}$. Then, $Q(x, y)=([j x, y]+i[x, y]) / 4$ is an Ω-positive hermitian map $V \times V \rightarrow W$. By using this pair of Ω and Q, we now define a Siegel domain D of type II: $D=\{(w, v) \in W \times V ; \operatorname{Im} w-Q(v, v) \in \Omega\}$. Then, $S(D)=\{(x+i Q(\zeta, \zeta), \zeta)$; $x \in \mathcal{B}(1), \zeta \in V\}$ and $N(D)=\{n(x, \zeta) ; x \in \mathfrak{B}(1), \zeta \in V\}$ with multiplication

$$
n(x, \zeta) n\left(x^{\prime}, \zeta^{\prime}\right)=n\left(x+x^{\prime}+2 \operatorname{Im} Q\left(\zeta, \zeta^{\prime}\right), \zeta+\zeta^{\prime}\right)
$$

3. Let Ξ be the set of all $\lambda \in \mathfrak{B}(1)^{*}$ such that the hermitian form $\lambda \circ Q$ is nondegenerate. E contains the dual cone Ω^{*}. Now we have a family $\left(\pi_{2}, \mathcal{S}_{2}\right)_{\lambda_{\in E}}$ of concrete irreducible unitary representations of $N(D)$ enough to decompose $L^{2}(N(D)$) (Kirillov model). For $\lambda \in \Xi$, let $\rho(\lambda)$ be the Pfaffian of the alternating bilinear form $\operatorname{Im} \lambda \circ Q$ on $\mathfrak{\xi}(1 / 2)$. The Fourier transform \hat{f} of $f \in C_{c}^{\infty}(N(D))$ is by definition $\hat{f}(\lambda)=\int_{N(D)} f(n) \pi_{\lambda}\left(n^{-1}\right) d n$, where $d n$ is the Haar measure on $N(D)$. Then, the Plancherel formula for $N(D)$ is written as $\|f\|^{2}=C \int_{S}\|\hat{f}(\lambda)\|_{\text {HS }}^{2} \rho(\lambda) d \lambda$. The positive constant C depends only on the normalization of $d n$. One can define the Fourier transform of $f \in L^{2}(N(D))$ in the standard way.
4. Let $\psi \in C(\Omega)$ be everywhere positive such that $\psi(a t)=a^{\delta} \psi(t)(a>0$, $t \in \Omega$) for some $\delta \in \mathbf{R}$. Let $H^{2}(D, \psi)$ be the Hilbert space of \mathbf{C}-valued holomorphic functions on D satisfying

$$
\|F\|^{2}=\int_{D}|F(x+i y, \zeta)|^{2} \psi(y-Q(\zeta, \zeta)) d x d y d \zeta<\infty .
$$

For $F \in H^{2}(D, \psi)$, put $f_{t}(x, \zeta)=F(x+i(t+Q(\zeta, \zeta)), \zeta)$ for every $t \in \Omega$. Then, f_{t} belongs to $L^{2}\left(N(D)\right.$, so one can consider the Fourier transform $\left(f_{t}\right)^{\wedge}$. Now \mathfrak{S}_{λ} can be identified with $L^{2}\left(\mathbf{R}^{n}\right)$, where $n=\operatorname{dim}_{C} V$. Let ϕ_{0}^{λ} be the zero-th Hermite function and V_{λ} the one dimensional subspace of \mathscr{S}_{λ} spanned by ϕ_{0}^{2}. We denote by $\mathcal{G}^{2}\left(\Omega^{*}, \psi\right)$ the Hilbert space of functions Φ on Ξ taking value at $\lambda \in \Xi$ in the Hilbert space of Hilbert-Schmidt operators on \mathscr{S}_{λ} such that (i) $\Phi(\lambda)=0$ if $\lambda \notin \Omega^{*}$; (ii) Range $\Phi(\lambda) \subset V_{\lambda}$ if $\lambda \in \Omega^{*}$;
(iii) $\|\Phi\|^{2}=C \int_{0^{*}}\|\Phi(\lambda)\|_{\text {HS }}^{2} I_{\psi}(\lambda) \rho(\lambda) d \lambda<\infty$, where $I_{\psi}(\lambda)=\int_{\Omega} e^{-2 \lambda(x)} \psi(x) d x$.

Theorem 1. Let $F \in H^{2}(D, \psi)$ and f_{t} be as above. Then, $\Phi(\lambda)=$ $e^{\lambda(t)}\left(f_{t}\right)^{\wedge}(\lambda)$ is independent of $t \in \Omega$ and belongs to $\mathscr{H}^{2}\left(\Omega^{*}, \psi\right)$. Conversely, let $\Phi \in \mathcal{H}^{2}\left(\Omega^{*}, \psi\right)$. Then,

$$
F(x+i(t+Q(\zeta, \zeta)), \zeta)=C \int_{\Omega^{*}} e^{-\lambda(t)} \operatorname{Tr}\left[\pi_{\lambda}(x, \zeta) \Phi(\lambda)\right] \rho(\lambda) d \lambda
$$

is absolutely convergent and gives an element $F \in H^{2}(D, \psi)$ such that $\Phi(\lambda)$ $=e^{\lambda(t)}\left(f_{t}\right)^{\wedge}(\lambda)$. Moreover, the map $F \mapsto \Phi$ is unitary.
5. Let Λ be as in 1 and τ_{Λ} the irreducible unitary representation of K on a finite dimensional Hilbert space E with highest weight Λ. Since $P_{+} K_{C}$ is a semidirect product, τ_{A} can be naturally extended to a representation of $P_{+} K_{C}$. Let $c \in G_{C}$ be the element defined by (1) and put $\Phi_{A}(g)=$ $\tau_{A}\left(k(c)^{-1}\right) \tau_{\Lambda}(k(c g))$. We note $c g \in P_{+} K_{c} P_{-}$for $g \in G$. Put

$$
\theta_{0}(t)=\left|\operatorname{det}_{s(1 / 2)} \operatorname{Ad} \eta_{0}(t)\right|^{-1}\left|\operatorname{det}_{\beta_{(1)}} \operatorname{Ad} \eta_{0}(t)\right|^{-2} \quad(t \in \Omega)
$$

and $\Theta_{4}(\alpha(h))=\Phi_{\Lambda}(h)(h \in S=\exp \mathfrak{Z})$, where α is the map $G \rightarrow D$ which induces a G-equivariant biholomorphism of G / K onto D. Now, $\mathcal{H}(\Lambda)$ consists of E-valued holomorphic functions on D with

$$
\|F\|^{2}=\int_{D}\left\|\Theta_{A}(i y, \zeta)^{-1} F(x+i y, \zeta)\right\|^{2} \theta_{0}(y-Q(\zeta, \zeta)) d x d y d \zeta<\infty
$$

Let v_{A} be a highest weight vector for τ_{A} normalized so that $\left\|v_{A}\right\|=1$. We take an orthonormal basis $v_{1}=v_{1}, v_{2}, \cdots, v_{d}\left(d=\operatorname{deg} \tau_{4}\right)$ in E consisting of weight vectors arranged in order so that any vector in the root subspaces corresponding to positive compact roots in Δ is represented, under τ_{1}, by an upper triangular matrix. We denote by Λ_{j} the weight for v_{j}. Let E_{k} be the one dimensional subspace of E spanned by v_{k} and $\mathscr{H}_{j}(\Lambda)=$ $\left\{F \in \mathcal{H}(\Lambda) ; F(w, \zeta) \in E^{j}\right\}$, where $E^{j}=E_{1} \oplus \cdots \oplus E_{j}$. Then, $\mathcal{H}_{j}(\Lambda)$ is a closed subspace of $\mathscr{H}(\Lambda)$ invariant under $\left.\Pi_{\Delta}\right|_{s}$. Let $\mathcal{H}^{1}(\Lambda)=\mathcal{H}_{1}(\Lambda)$ and $\mathcal{H}^{j}(\Lambda)=$ the orthogonal complement of $\mathscr{H}_{j-1}(\Lambda)$ in $\mathcal{H}_{j}(\Lambda)(j \geqq 2)$. Put $Y_{i}=X_{r_{i}}+X_{-\gamma_{i}}$ and define a positive character χ_{j} of $A=\exp$ a by $\chi_{j}\left(\exp \sum a_{i} Y_{i}\right)=\Pi \exp a_{i} \Lambda_{j}\left(\nu\left(Y_{i}\right)\right)$. Extending χ_{j} canonically to a character of S, we put $\psi_{j}(t)=\chi_{j}\left(\eta_{0}(t)\right)^{-2} \theta_{0}(t)$ for $t \in \Omega$. Then, $\psi_{j}(a t)=a^{\delta_{j}} \psi_{j}(t)(a>0, t \in \Omega)$ for some $\delta_{j} \in \mathbf{R}$. Consider the Hilbert space $H^{2}\left(D, \psi_{j}\right)$ of the type in 4 and define an operator T_{j} by $T_{j} F(w, \zeta)=\left(F(w, \zeta), v_{j}\right) \quad\left(F \in \mathscr{H}_{j}(\Lambda)\right) . \quad T_{j}$ is a bounded operator $\mathcal{H}_{j}(\Lambda) \rightarrow$ $H^{2}\left(D, \psi_{j}\right)$ with dense range. Therefore by considering the polar decomposition of $T_{j}, \mathscr{H}^{j}(\Lambda)$ is unitarily isomorphic to $H^{2}\left(D, \psi_{j}\right)$. Thus we have an irreducible decomposition $\mathscr{H}(\Lambda)=\mathcal{H}^{1}(\Lambda) \oplus \cdots \oplus \mathscr{G}^{a}(\Lambda)$ for $\left.\Pi_{\Delta}\right|_{S}$ [6, p. 381].
6. Put $I_{\Lambda}(\lambda)=\int_{\Omega} e^{-2 \lambda(t)} \Phi_{\Lambda}\left(\eta_{0}(t)^{-1}\right)^{2} \theta_{0}(t) d t\left(\lambda \in \Omega^{*}\right)$. The integral is absolutely convergent. Now the matrix of $I_{A}(\lambda)$ relative to the basis $\left(v_{k}\right)$ is upper triangular with (k, k)-entry $I_{\psi_{k}}(\lambda)>0$. Therefore we can give a meaning to $I_{A}(\lambda)^{1 / 2}$. Let $B_{2}\left(\mathcal{S}_{2}\right)$ be the Hilbert space of Hilbert-Schmidt operators on \mathscr{S}_{λ}. We put $\boldsymbol{A}\left(\mathfrak{S}_{\mathcal{L}_{\lambda}}\right)=\left\{T \in \boldsymbol{B}_{2}\left(\mathscr{S}_{\lambda}\right)\right.$; Range $\left.T \subset V_{\lambda}\right\}$. It is evident that $A\left(\mathfrak{S}_{2}\right)$ is a closed subspace of $\boldsymbol{B}_{2}\left(\mathfrak{S}_{2}\right)$. Consider the Hilbert space tensor product $A\left(\mathfrak{S}_{2}\right) \otimes E$ of two Hilbert spaces $A\left(\mathfrak{S}_{2}\right)$ and E. This is regarded as the Hilbert space of anti-linear Hilbert-Schmidt operators mapping E to $A\left(\mathcal{S}_{2}\right)$ via $(T \otimes v)(u)=(v, u) T$. For $\lambda \in \Omega^{*}$, we define an operator $M_{A}(\lambda)$ on $A\left(\mathcal{S}_{2}\right) \otimes E$ by $M_{A}(\lambda)(T \otimes v)=T \otimes I_{A}(\lambda)^{1 / 2} v$. Let $\boldsymbol{H}(\Lambda)$ be the Hilbert space of functions Ψ on Ξ whose value at $\lambda \in \Xi$ is in $A\left(\mathscr{S}_{2}\right) \otimes E$ such that
(i) $\Psi(\lambda)=0$ if $\lambda \notin \Omega^{*}$;
(ii) $\|\Psi\|^{2}=C \int_{\Omega^{*}}\left\|M_{\Lambda}(\lambda) \Psi(\lambda)\right\|^{2} \rho(\lambda) d \lambda<\infty$.

Put $\boldsymbol{H}_{j}(\Lambda)=\left\{\Psi \in \boldsymbol{H}(1) ; \Psi(\lambda) \in \boldsymbol{A}\left(\mathfrak{F}_{\mathfrak{j}}\right) \otimes E^{\boldsymbol{j}}\right\}$ and $\boldsymbol{T}_{j} \Psi^{\prime}(\lambda)=\Psi(\lambda) v_{j} \in \boldsymbol{A}\left(\mathfrak{F}_{\mathfrak{e}}\right)$ for $\Psi \in$ $\boldsymbol{H}_{j}(\Lambda)$. $\quad \boldsymbol{T}_{\boldsymbol{j}}$ is a bounded operator $\boldsymbol{H}_{j}(\Lambda) \rightarrow \mathscr{I}^{2}\left(\Omega^{*}, \psi_{j}\right)$ with dense range. Let $\boldsymbol{H}^{1}(\Lambda)=\boldsymbol{H}_{1}(\Lambda)$ and $\boldsymbol{H}^{j}(\Lambda)=$ the orthogonal complement of $\boldsymbol{H}_{j-1}(\Lambda)$ in $\boldsymbol{H}_{j}(\Lambda)$ $(j \geqq 2)$. Then, $\boldsymbol{H}^{j}(\Lambda)$ is unitarily isomorphic to $\mathscr{I}^{2}\left(\Omega^{*}, \psi_{j}\right)$ via the polar decomposition of \boldsymbol{T}_{j}. Therefore, we have an orthogonal decomposition $\boldsymbol{H}(\Lambda)=\boldsymbol{H}^{1}(\Lambda) \oplus \cdots \oplus \boldsymbol{H}^{d}(\Lambda)$. In view of Theorem 1, we get

Theorem 2. $\mathscr{H}(1)$ is unitarily isomorphic to $\boldsymbol{H}(1)$ under the procedure described above.

References

[1] Harish-Chandra: Amer. J. Math., 78, 564-628 (1956).
[2] S. Helgason: Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press, New York (1978).
[3] C. C. Moore: Amer. J. Math., 86, 358-378 (1964).
[4] T. Nomura: A description of a space of holomorphic discrete series by means of the Fourier transform on the Šilov boundary (preprint).
[5] R. D. Ogden and S. Vagi: Adv. Math., 33, 31-92 (1979).
[6] H. Rossi and M. Vergne: J. Funct. Anal., 13, 324-389 (1973).
[7] M. Vergne and H. Rossi: Acta Math., 136, 1-59 (1976).

