1. A Study of a Certain Non-Conventional Operator of Principal Type. II

By Atsushi Yoshikawa
Department of Mathematics, Hokkaido University
(Communicated by Kôsaku Yosida, m. J. A., Jan. 12, 1985)

Introduction. We continue our study of the operator
(1)

$$
B^{I}=D_{t}+\sqrt{-1}\left(t^{2} / 2+x\right) D_{v}
$$

$D_{t}=-\sqrt{-1} \partial / \partial t, D_{y}=-\sqrt{-1} \partial / \partial y$, in (a neighborhood of the origin in) R^{3} ([3]). Here we discuss solvability of the equation:
(2)

$$
B^{I} u=f
$$

for a given f. Since the operator B^{T} is not locally solvable, our primary task is to specify the conditions on f which guarantee existence of a solution u to (2). One such condition is Condition ($A^{ \pm}$) to be introduced in the next section (see also Theorem in § 2).

1. Condition $\boldsymbol{A}^{ \pm}$. Let $\beta(t, r, x)=\int_{r}^{t}\left(s^{2} / 2+x\right) d s$. Denote by \tilde{f} the Fourier transform of f with respect to the argument y provided it makes sense. Define

$$
\begin{equation*}
J^{ \pm}(f ; x, \eta)=\int_{ \pm \infty}^{\mp \sqrt{-2 x}} \tilde{f}(r, x, \eta) \exp \{ \pm \beta(\pm \sqrt{-2 x}, r, x) \eta\} d r \tag{3}
\end{equation*}
$$

if $x<0$ and $\pm \eta>0$. Note $\beta(\pm \sqrt{-2 x}, r, x) \eta \leqq 0$ in the integrals. We set $J^{ \pm}(f ; x, \eta)=0$ for $x \geqq 0$ or for $x<0$ and $\pm \eta<0$. We write $J_{k}^{ \pm}(x, \eta)$ instead of $J^{ \pm}\left(f_{k} ; x, \eta\right)$, where $f_{k}^{ \pm}=(t \mp \sqrt{-2 x})^{k}$.

Lemma 1. For any $x<0, \pm \eta>0$ and $m, n=0,1,2, \cdots$, we have

$$
\left|\partial_{\eta}^{m}\left(x \partial_{x}\right)^{n} J_{\bar{k}}^{ \pm}(x, \eta)\right| \leqq C|\eta|^{-(k+1) / 3-m}\left(1+|\eta|(\sqrt{-2 x})^{3}\right)^{(m+n) / 3} ;
$$

$J_{0}^{ \pm}(x, \eta)>0$ and

$$
\left|\partial_{\eta}^{m}\left(x \partial_{x}\right)^{n}\left\{J_{0}^{ \pm}(x, \eta)^{-1}\right\}\right| \leqq C|\eta|^{1 / 3-m}\left(1+|\eta|(\sqrt{-2 x})^{3}\right)^{1 / 6+2(m+n) / 3} .
$$

Here C stands for various constants.
This lemma can be proved by a routine computation. $J_{\frac{ \pm}{\star}}^{ \pm}(x, \eta)$ can be expressed in terms of confluent hypergeometric functions and related functions. For details, see [4].

Now we have to choose the class of functions $f(t, x, y)$ for which the integrals (3) are well-defined. Let \mathscr{F} be the class of distributions $f(t, x, y)$ in $\mathcal{S}^{\prime}\left(\boldsymbol{R}^{3}\right)$ such that for each $h(y)$ in $\mathcal{S}\left(\boldsymbol{R}_{y}\right)$ the coupling $\langle f(t, x, y), h(y)\rangle$ is continuous in t, at most of polynomial growth in t, and measurable in x. Decompose $f \in \mathscr{F}$ into a difference: $f=f^{+}-f^{-}$, where $\tilde{f}^{ \pm}$are supported in $\pm \eta>0$ so that $f^{ \pm}$have holomorphic extensions in $\pm \operatorname{Im} y>0$. Denote by $\mathscr{F}^{ \pm}$the sets of $f^{ \pm}$. Then $\mathscr{F}^{ \pm}$are subspaces of \mathscr{F} and $\mathscr{F}=\mathscr{F}^{+}-\mathscr{F}^{-}$holds in an obvious manner.

Lemma 2. Let

$$
\begin{equation*}
\left(Q^{ \pm} f\right)^{\sim}(x, \eta)=J^{ \pm}(f ; x, \eta) / J_{0}^{ \pm}(x, \eta) \tag{4}
\end{equation*}
$$

if $x<0$ and $\pm \eta>0$ while $\left(Q^{ \pm} f\right)^{\sim}(x, \eta)=0$ if $x \geqq 0$ or if $x<0$ and $\pm \eta<0$. For any $f=f^{+}-f^{-} \in \mathscr{F}$, we have decompositions:

$$
f^{ \pm}(t, x, y)=f_{0}^{ \pm}(t, x, y)+f_{1}^{ \pm}(x, y)
$$

such that $Q^{ \pm} f_{0}^{ \pm}=0, Q^{ \pm} f_{1}^{ \pm}=f_{1}^{ \pm}, Q^{ \pm} f_{1}^{\mp}=0$.
In fact, $f_{0}^{ \pm}=f^{ \pm}-Q^{ \pm} f, f_{1}^{ \pm}=Q^{ \pm} f$. Note $Q^{ \pm} f^{\mp}=0$.
Definition. We say that $f \in \mathscr{F}$ satisfies Condition $\left(A^{ \pm}\right)$if

$$
\begin{aligned}
& \left|\left\langle\psi(x, \eta), J^{ \pm}(f ; x, \eta) \exp \{\mp 4 x \sqrt{-2 x} \eta / 3\}\right\rangle\right| \\
& \quad \leqq C \sup _{x, \eta} \sum_{j+k+m \leq N}\left|\left(x \partial_{x}\right)^{j} \eta^{k} \partial_{\eta}^{m} \psi(x, \eta)\right|
\end{aligned}
$$

for $\psi \in \mathcal{S}\left(\boldsymbol{R}_{x, \eta}^{2}\right)$. Here N is a suitable positive integer, and C is a positive constant.

Note $\pm 4 x \sqrt{-2 x} / 3=\beta(\pm \sqrt{-2 x}, \mp \sqrt{-2 x}, x), x<0$, and $\pm \beta(\mp \sqrt{-2 x}, r, x)$ >0 for $-\sqrt{-2 x}< \pm r<2 \sqrt{-2 x}, x<0$. Thus, Condition ($A^{ \pm}$) roughly provides a control of the behaviors of $\tilde{f}(t, x, \eta)$ with respect to η for $-\sqrt{-2 x}$ $< \pm t<2 \sqrt{-2 x}, x<0$. However, the condition itself is too involved. We indicate some of its flavors.

Proposition. Let $f(t, x, y)$ be such that $\tilde{f}(t, x, \eta)$ is smooth and satisfies

$$
\left|\partial_{t}^{m} \tilde{f}(t, x, \eta)\right| \leqq C(1+|\eta|)^{s}, \quad m=0,1
$$

for some s. If, for large $\eta, \tilde{f}(t, x, \eta)$ is positively homogeneous in η, and if f satisfies Condition $\left(A^{ \pm}\right)$, then $f(\pm \sqrt{-2 x}, x, y), x<0$, have holomorphic extensions with respect to y in $\pm \operatorname{Im} y<0$.

In fact, $\tilde{f}^{ \pm}(t, x, \eta)=\tilde{f}^{ \pm}(\pm \sqrt{-2 x}, x, \eta)+(t \mp \sqrt{-2 x}) \tilde{g}^{ \pm}(t, x, \eta)$ by Taylor's expansion, Lemma 1 implies

$$
\left(Q^{ \pm} f\right)^{\sim}(x, \eta)=f^{ \pm}(\pm \sqrt{-2 x}, x, \eta)+O\left(|\eta|^{s-1 / e}\right), \quad \pm \eta>0,
$$

$x<0$, and $\tilde{f}^{ \pm}(\pm \sqrt{-2 x}, x, \eta) \exp \{\mp 4 x \sqrt{-2 x} \eta / 3\}$ tempered in $\eta, \pm \eta>0$. It follows $\tilde{f}^{ \pm}(\pm \sqrt{-2 x}, x, \eta)=0, x<0$. Since $f=f^{+}-f^{-}, f(\pm \sqrt{-2 x}, x, y)=$ $f^{\mp}(\pm \sqrt{-2 x}, x, y)$ are holomorphic in $\pm \operatorname{Im} y<0$.

To characterize the range of the operator B^{I}, F. Treves has speculated a condition of holomorphic extendability of the restrictions of f to $t^{2} / 2+x$ $=0, x<0$, in connection with a general framework N. Hanges and F. Treves have been developing ([1], [2]). The above proposition confirms albeit to a limited extent a part of Treves' speculation. Actually we expect that the decompositions:

$$
\begin{equation*}
J^{ \pm}(f ; x, \eta)=\left(A^{ \pm} f\right)^{\sim}(x, \eta)+\left(B^{ \pm} f\right)^{\sim}(x, \eta) \exp \{ \pm 4 x \sqrt{-2 x} \eta / 3\} \tag{5}
\end{equation*}
$$

be valid for a wide class of functions $f(t, x, y)$, where $\left(A^{ \pm} f\right)(x, y)$ and $\left(B^{ \pm} f\right)(x, y)$ are tempered with respect to y. This is in fact true if $f(t, x, y)$ is a polynomial in t. However, we do not know the exact extent of validity of (5). For those f satisfying (5) Condition ($A^{ \pm}$) means that $\left(A^{ \pm} f\right)(x, y)$ have holomorphic extensions with respect to y in $4 x \sqrt{-2 x} / 3< \pm \operatorname{Im} y, x<0$.
2. Main results. Now we state and prove the following

Theorem. Assume $f(t, x, y)$ satisfy Condition ($A^{ \pm}$). Then the equation (2) has a solution $u(t, x, y)$ such that u and u_{t} both belong to the class \mathcal{F}. Conversely, if u and $u_{t} \in \mathscr{F}$, then $B^{I} u$ satisfies Condition ($A^{ \pm}$).

Here is a very easy proof. Fourier transforming (2) with respect to
y, we get
(6)

$$
\left\{D_{t}+\sqrt{-1}\left(t^{2} / 2+x\right) \eta\right\} \tilde{u}=\tilde{f},
$$

or
(7) $\quad D_{t}(\tilde{u} \exp \{-\beta(t, s, x) \eta\})=\tilde{f} \exp \{-\beta(t, s, x) \eta\}$
for any s and η. First we show the second half of Theorem. If u and u_{t} $\in \mathcal{F}$, then substituting $f=B^{I} u$ into (3) with $s= \pm \sqrt{-2 x}$, we get
(8) $J^{ \pm}\left(B^{I} u ; x, \eta\right)=\sqrt{-1} \tilde{u}(\mp \sqrt{-2 x}, x, \eta) \exp \{\beta(\pm \sqrt{-2 x}, \mp \sqrt{-2 x}, x) \eta\}$ when $x<0, \pm \eta>0$. Therefore, $B^{I} u$ satisfies Condition ($A^{ \pm}$).

Now we show the first half of Theorem. Let f satisfy Condition ($A^{ \pm}$). Recall the decomposition $f=f^{+}-f^{-}$. We decompose u analogously : $u=u^{+}$ $-u^{-}$. Then (6) and (7) are valid with \tilde{u} and \tilde{f} replaced by $\tilde{u}^{ \pm}$and $\tilde{f}^{ \pm}$. (6), (7) thus replaced are still called (6), (7). Restricting the domains of integrations to where $\beta \eta \leqq 0$, we get from (7)

$$
\begin{equation*}
\tilde{u}^{ \pm}(t, x, \eta)=\sqrt{-1} \int_{ \pm \infty}^{t} \tilde{f}^{ \pm}(r, x, \eta) \exp \{\beta(t, r, x) \eta\} d r \tag{9}
\end{equation*}
$$

when $x \geqq 0$ or $x<0$ and $\pm t \geqq \sqrt{-2 x}$, and

$$
\begin{align*}
\tilde{u}^{ \pm}(t, x, \eta)= & \sqrt{-1} \int_{\mp \sqrt{-2 x}}^{t} \tilde{f}^{ \pm}(r, x, \eta) \exp \{\beta(t, r, x) \eta\} d r \tag{10}\\
& +\tilde{u}^{ \pm}(\mp \sqrt{-2 x}, x, \eta) \exp \{\beta(t, \mp \sqrt{-2 x}, x) \eta\}
\end{align*}
$$

when $x<0$ and $\pm t<\sqrt{-2 x}$. Substituting (9) and (10) into (6), we obtain the jump condition at $t= \pm \sqrt{-2 x}, x<0$:
(11) $J^{ \pm}\left(f^{ \pm} ; x, \eta\right)=\sqrt{-1} \tilde{u}^{ \pm}(\mp \sqrt{-2 x}, x, \eta) \exp \{\beta(\pm \sqrt{-2 x}, \mp \sqrt{-2 x}, x) \eta\}$.
(10) is thus rewritten :

$$
\begin{align*}
\tilde{u}^{ \pm}(t, x, \eta)= & \sqrt{-1} \int_{\mp \sqrt{-2 x}}^{t} \tilde{f}^{ \pm}(r, x, \eta) \exp \{\beta(t, r, x) \eta\} d r \tag{12}\\
& +\sqrt{-1} J^{ \pm}\left(f^{ \pm} ; x, \eta\right) \exp \{\beta(t, \pm \sqrt{-2 x}, x) \eta\} .
\end{align*}
$$

Therefore, if Condition ($A^{ \pm}$) holds, then (9) and (10) lead to a solution of (2).

References

[1] N. Hanges and F. Treves: (in preparation).
[2] F. Treves: (Personal communication).
[3] A. Yoshikawa: A study of a certain non-conventional operator of principal type. Proc. Japan Acad., 60A, 90-92 (1984).
[4] -: On the evaluation of certain phase integrals (in preparation).

