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1. Introduction. Let Z be the, d-dimensional cubic lattice and
/2--{--1, +1}z be the configuration space, equipped with the product
of discrete topology. stands for the Borel a-field of /2. The sub
a-fields {v VZ} are defined by

--{(x) x e V}.
A probability measure./ on (/2,) is said to have local Markov

property (LMP), if for every finite VcZ,
(1) /(. c)(o)=Z(. I)((o) on /-a.s.
where 3V--{x e VC;[x--y]--max ([x*--yi]; l_i_d)--1 for some y e V}.
If (1) holds for any VcZ, then / is said to have global Markov
property (GMP). It is known that (LMP) does not necessarily imply
(GMP) (see for example, [4], [6], [7]). Therefore. the question is when
(LMP) implies (GMP). In this note, we discuss this question for the
d-dimensional Ising model. The Hamiltonian of this model is given
for each finite VcZ, with magnetic field h, and the boundary condi-
tion (o /2, by
( 2 ) Evbyl(o) x,e Jx, y(x)(y)

-{- Y-,eveJ,zi(x)o(y)+ hx7(x),
where. J,=J0,_=0 unless [x--yl-1. For 0, the corresponding
finite Gibbs state or (2) is given by
( 3 ) P,({(x), x e V} )= (normalization). exp
and
( 4 ) P,,({ri(x) co(x), x e V} [w) 1.

A Gibbs state for the Ising model (2) is a probability measure /
on (/2, ) satisfying
(5) /(. l,o)(w)=P,(. ]w)/-a.s. w, or every finite VcZ.

By definition, any Gibbs state or Ising model (2) has (LMP), but
not every Gibbs state or (2) has (GMP) (a counterexample is given

in [4]). If J={J,} satisfies Dobrushin’s uniqueness condition, then
the unique Gibbs state has (GMP) ([2], [3]).

In this note, we assume that the Ising model (2) has attractive
interaction J,=0 or every pair x, y e Z. In this case, it is known
that there, exists a critical , 0<=oo (the last equality holds iff
d=l), such that Gibbs state is unique or flfl, and non-unique or
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fying
(6) E/(f)>=E(f)>=E,_(f) i f is increasing,
or any Gibbs state./, where we define the. order in/2 by the component-
wise inequality; o>= iff (o(x)>=V(x) for any x e Z.

It is proved that both// and Z_ have (GMP), and henceforth the
unique Gibbs state has (GMP) whenever ([3], [4]). It seems to
b.e natural to expect that every extremal Gibbs state has (GMP) (see
[4]), but unfortunately there is no answer to this question. Here, we
give a new class o Gibbs states for Ising model (2) with attractive
interaction, which has (GMP).

Theorem 1. For every a e [0, 1], let /--a//+(1--a)/_. Then,
/ has (GMP).

In the simplest case, i.e. d=2, and J.=--x-,, it is known that
.every Gibbs state for (2) equals Z for some a e [0, 1] ([1], [5]), which
implies

Theorem 2. For d=2, J.=---l,, every Gibbs state for (2)
has (GMP).

2. Proof of Theorem 1. We start with the following"
Lemma. Let t, l be distinct translation-invariant, mixing pro-

bability measures on ([2, ), i.e.
( 7 ) for any finite V, V.Z,

limrsupe,supze,+ll(AB)--l(A)l(B)l=O (i=1, 2),
( 8 ) /(A)=/(rA) for any A e , r e Z (i= 1, 2),
vhere " f2-[2 is defined by (ro)(x)=o(x+r), x e Z.

Let R be a finite subset of Z, such that there exists an event
A* e with/(A*)q:/(A*). If SZ satisfies that
,(9) {reZ; R+rS}=,
then separates [ and [, i.e. there exists an event D e such that

/(D) 1 =/(/2 \D).
Pro.o.f. We enumerate the set {r e Z R+rS} by {r, r, } and

define a sequence of random variables X, X, by

X(o) I_,((o).
Obviously, X is z/-me.asurable. Therefore substituting R both
for V and V in (7), for any 0 we can find r0=0 sufficiently large.
so that

[E(XX)--I(A*)I< if Ir-rl>=ro (i=1, 2).
This implies the L (/)-convergence of n- X, i= 1, 2 In fact,
we. have

E,, In-EX--I(A*)I
=n- -]<=,_ {E,(XX-I(A*))}

n-(2ro+1)+e (i= 1, 2).
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Thus, taking a subsequence n, n., ..., we obtain that

n <=<=n X()-+z(A*) as p-c /,-a.s. (i= 1, 2).
Putting

D--{o e 9; lim {n; <_nX(o)}--(A*)},
we. obtain the desired result. Q.E.D.

Proof of Theorem 1. The statement of Theorem. 1 is trivial if
Gibbs state is unique. Therefore we can assume that /:/:/_, i.e.
.d2, and

1) If 3V is a finite set, then either V or V is a finite set. Since
/. has (LMP), (1) holds if V is a finite set. So assume that V is a
finite set. Let W be any finite subset of V, and U=_V\3V=(VU3V).
Fix ] e/2 arbitrarily and let A e v, B e be atoms such that

A {o e 9; o(x)= ](x), x e U}, B= {o e 2; (o(x)=i(x), x e V}.
Then by definitions (3) and (5), we have or any C e w,

/(n B C)--[ P,(A o)/(dw) P,(A I])[(B C),
BC

which implies that
,(C A B)--(n B C)/[(A B)--z(C B).

Since the last term of the above equality equals p(C [.)(]), and since
W V, C e, and ; e/2 are arbitrary, we obtain (1).

2) I OV is an infinite set, then we apply the lemma. Since
and/_ are known to be translation-invariant and mixing, and since
+(o(0)=1):/:Z_(o(0)=1), i.e. any infinite set S satisfies (9), we can
find an event D e such that Z (D) 1=/_(9\D). Let f be an ,-
measurable bounded unction, and g be an o-measurable bounded
unction. By definition, we have
E,(fg) dE,+ (fg)+ (1 a)E,_(fg) dE, (f g)+ (1 a)E,_ (f- g),

where f/(o)=E./(fl)(o), f-(o)=E,_(fl.)(o), since // and
have (GMP). Noting that

-1E,/(f/g)=E,+{(f/I)g}--a E,{(f I)g}
and

we obtain
E,_(f-g) (1 c0-1E,{(f-I\)g},

which proves (1).
E,.(fg)-- E,.{(f I+f-I\). g},

Q.E.D.
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