Small Deformations of Certain Compact 11. Class L Manifolds

By Asahiko YAMADA

Department of Mathematics, Sophia University

(Communicated by Kunihiko KODAIRA, M. J. A., Jan. 12, 1984)

The notion of Class L manifolds was introduced by Ma. Kato [1]. The most significant property of Class L is that any two members of Class L can be connected complex analytically to obtain another Class L manifold. The purpose of this note is to construct a series of compact Class L 3-folds $\{M(n)\}_{n \in N}$ inductively and to determine their all small deformations. Details will be published elsewhere.

We denote the 3-dimensional complex projective space by P^{3} 1. of which the system of homogeneous coordinates we write $[\zeta_0: \zeta_1: \zeta_2: \zeta_3]$. For any positive real number r, we define a domain U_r in P^3 by U_r $= \{ [\zeta_0 : \zeta_1 : \zeta_3 : \zeta_3] \in P^3 | |\zeta_0|^2 + |\zeta_1|^2 < r(|\zeta_2|^2 + |\zeta_3|^2) \}.$ A complex 3-fold X is said to be of Class L if it contains a domain which is biholomorphic to U_1 , in other words, if there exists a holomorphic open embedding of U_1 into X. Let σ be a holomorphic automorphism of P^3 defined by $\sigma([\zeta_0:\zeta_1:\zeta_2:\zeta_3]) = [\zeta_2:\zeta_3:\zeta_0:\zeta_1].$ For any real number ε greater than 1, we denote the domain $U_{\epsilon} - \overline{U_{1/\epsilon}}$ by $N(\epsilon)$ where $\overline{}$ indicates the topological closure. Then it is easy to see that U_r is isomorphic to $U = U_1$ and that $\sigma(N(\varepsilon)) = N(\varepsilon)$.

Suppose that X_1 and X_2 are Class L manifolds with open embeddings $i_{\nu}: U_{\epsilon} \to X_{\nu}, \nu = 1, 2$. Put $X_{\nu}^{*} = X_{\nu} - \overline{i_{\nu}(U_{1/\epsilon})}$. We define a complex manifold $Z(X_1, X_2, i_1, i_2) = X_1^* \cup X_2^*$ by identifying a point $x_1 \in i_1(N(\varepsilon)) \subset X_1^*$ with the point $x_2 = i_2 \circ \sigma \circ i_1^{-1}(x_1) \in X_2^*$. $Z(X_1, X_2, i_1, i_2)$ is also a Class L manifold because $N(\varepsilon)$ is of Class L. Remark that the construction of $Z(X_1, X_2, i_1, i_2)$ depends on the choice of the open embeddings i_1 and i_2 .

Now we define a compact Class L manifold M = M(1). Let l_0 and l_{∞} be projective lines in P^{3} given by

$$l_0: \zeta_0 = \zeta_1 = 0, \qquad l_\infty: \zeta_2 = \zeta_3 = 0,$$

and put $W = P^3 - l_0 - l_{\infty}$. Consider the holomorphic automorphism g: $[\zeta_0:\zeta_1:\zeta_2:\zeta_3] \mapsto [\zeta_0:\zeta_1:\alpha\zeta_2:\alpha\zeta_3]$ of W, where α is a complex number with $0 < |\alpha| < 1$. Letting $\langle g \rangle$ be the infinite cyclic group generated by g, we define the complex manifold M to be the quotient space of W by Taking real numbers β , γ , δ such that $|\alpha| < \beta < \gamma < \delta < 1$, we define $\langle g \rangle$. subdomains U_0 , U_w , U_∞ in W as follows:

No. 1]

$$U_0 = U_\delta - \overline{U_{|\alpha|}}, \quad U_w = N\left(\frac{1}{\gamma}\right), \quad U_\infty = U_{\beta/|\alpha|^2} - \overline{U_{1/\delta}}.$$

By the above definition, we have

 $gU_0 \cap U_{\infty} = U_{\beta/|\alpha|^2} - \overline{U_{1/|\alpha|}} \neq \phi, \qquad gU_W \cap U_{\infty} = \phi.$ This shows that M is obtained by identifying $\zeta \in gU_0 \cap U_{\infty}$ with $g^{-1}(\zeta) \in U_0$ in $U_0 \cup U_W \cup U_{\infty}$. As already remarked, $N(1/\tau)$ is of Class L. Hence M is a Class L manifold.

Let us construct the sequence of compact Class L manifolds $\{M(n)\}_{n \in N}$. Fix a small positive number λ . Let ι_{λ} be a holomorphic mapping of U_{ϵ} into U_{W} given by $\iota_{\lambda}([\zeta_{0}:\zeta_{1}:\zeta_{2}:\zeta_{3}]) = [\zeta_{0} + \lambda\zeta_{2}:\zeta_{1} + \lambda\zeta_{3}: \lambda\zeta_{2} - \zeta_{0}: \lambda\zeta_{3} - \zeta_{1}]$. We define $M(2) = Z(M, M, \iota_{\lambda}, \iota_{\lambda})$. Suppose that we have $M(n) = Z(M(n-1), M, \iota, \iota_{\lambda})$ where $\iota: U_{\epsilon} \to M(n-1)$. We define $M(n+1) = Z(M(n), M, \iota'_{\lambda}, \iota_{\lambda})$ where $\iota'_{\lambda}: U_{\epsilon} \to \iota(N(\epsilon)) \subset M(n)$ taking suitable $\lambda' > 0$.

2. Small deformations of M. It is easily seen that M is a fibre bundle over $P^1 \times P^1$. On the cohomologies of M with coefficient in Θ , we have:

a) dim $H^0(M, \Theta) = 7$, b) dim $H^1(M, \Theta) = 7$,

c) dim $H^{2}(M, \Theta) = 0$, d) dim $H^{3}(M, \Theta) = 0$.

First a) is easily shown by calculations. d) is due to [1] p. 12, Proposition 2.3. c) is verified by applying the spectral sequence to the fibre bundle M over $P^1 \times P^1$. Since we can see that all the Chern numbers of M vanish, we get d) by the Riemann-Roch theorem and by the results a), c) and d).

We define a complex manifold \mathcal{M} as follows. Let B be a domain in C^{τ} defined by

 $B = \{t = (t_1, t_2, \cdots, t_7) \in C^7 || t_i | < \delta(i = 1, 2, \cdots, 7)\}$

where δ is a sufficiently small positive number. Let g_t be a holomorphic automorphism of W given by $g_t([\zeta_0:\zeta_1:\zeta_2:\zeta_3]) = [\zeta_0 + t_1\zeta_1:t_2\zeta_0 + (1+t_3)\zeta_1:\alpha(1+t_4)\zeta_2+t_5\zeta_3:t_6\zeta_2+\alpha(1+t_7)\zeta_3]$ for $t \in B$. We put $\tilde{g}(\zeta, t) = (g_t(\zeta), t)$, then \tilde{g} is a holomorphic automorphism of $W \times B$. The quotient space of $W \times B$ by $\langle \tilde{g} \rangle$ is a complex manifold. We define \mathcal{M} by $W \times B/\langle \tilde{g} \rangle$. The projection $\varpi: W \times B \to B$ induces a projection of \mathcal{M} to B because ϖ and g commute, i.e., $\varpi \circ g = \varpi$. It is easily checked that (\mathcal{M}, B, ϖ) is a complex analytic family with $\varpi^{-1}(0) = M$. We can show that the Kodaira-Spencer map at 0 is an isomorphism.

Theorem 1. (\mathcal{M}, B, ϖ) is the complete, effectively parametrized complex analytic family of the small deformations for M, in other words, any small deformation of M is biholomorphic to $W/\langle g_t \rangle$ for some $t \in B$.

3. Small deformations of $M(n)(n \ge 2)$. First we show

Proposition. Let X_1 and X_2 be compact Class L manifolds. Let

 $X_1 \# X_2$ denote any manifold obtained by connecting X_1 and X_2 . Then we have

$$\dim H^2(X_1 \# X_2, \Theta) = \dim H^2(X_1, \Theta) + \dim H^2(X_2, \Theta).$$

This can be proved by using the Mayer-Vietoris exact sequence for $X_1^* \cup X_2^*$ and the exact sequences of local cohomologies for the pairs $(X_i, X_i^*)(i=1, 2)$.

On the cohomologies of M(n), $n \ge 2$, we have

- a) dim $H^{0}(M(n), \Theta) = 3$,
- b) dim $H^{1}(M(n), \Theta) = 15n 12$,
- c) dim $H^2(M(n), \Theta) = 0$,
- d) dim $H^{3}(M(n), \Theta) = 0$.

a) is shown by easy calculations and d) is due to [1]. c) is shown by the above proposition and the fact that $H^2(M, \Theta) = 0$. b) is proved by the Riemann-Roch theorem and the formula on the Chern numbers of connected sums of Class L manifolds [1] and the results a), c) and d).

Letting δ be a small positive real number and B(t') a domain in C^4 defined by

$$B(t') = \{t' = (t'_1, t'_2, t'_3, t'_4) \in C^4 \mid |t'_i| < \delta \ (i = 1, \dots, 4)\},\$$

we define a holomorphic open embedding $s_{\iota'}$ of $N(\eta) \subset U_w \subset M$ into U_w by

$$s_{\iota'}([\zeta_0:\zeta_1:\zeta_2:\zeta_3]) = [\mu\zeta_0 + \nu\zeta_2:\nu t_1'\zeta_0 + (\mu + \nu t_2')\zeta_1 + \mu t_1'\zeta_2 + (\nu + \mu t_2')\zeta_3: \\ - (\nu(1 + t_3')\zeta_0 + \nu t_4'\zeta_1 + \mu(1 + t_3')\zeta_2 + \mu t_4'\zeta_3): - (\nu\zeta_1 + \mu\zeta_3)]$$

where $\mu = 1 + \lambda^2$, $\nu = 1 - \lambda^2$. $s_{\iota'}$ is well-defined if we take λ and η so small that $\iota_{\lambda}(N(\varepsilon)) \subset N(\eta) \subset U_W$. We restrict $s_{\iota'}$ to $(U_W - \overline{\iota_{\lambda}(N(\varepsilon))}) \cap s_{\iota'}^{-1}(U_W)$ which we shall denote for simplicity also by $s_{\iota'}$, then $s_{\iota'}$ becomes a holomorphic open embedding of $(U_W - \overline{\iota_{\lambda}(N(\varepsilon))}) \cap s_{\iota'}^{-1}(U_W)$ into U_W .

Now we construct a complex manifold $\mathcal{M}(2)$ as follows. First take two copies of \mathcal{M} . We write (x^1, t^1) a point of one of the copies and (x^2, t^2) that of another to distinguish them from each other. From Theorem 1, $M_t = \varpi^{-1}(t)$ contains U_w and U_w contains $\iota_{\lambda}(U_{1/\epsilon})$. Put \mathcal{M}^* $= \mathcal{M} - (\overline{\iota_{\lambda}(U_{1/\epsilon})} \times B)$. We define $\mathcal{M}(2) = \mathcal{M}^* \times B \times B(t') \cup \mathcal{M}^* \times B \times B(t')$ by identifying

$$((x^1, t^1), t^2, t') \in \iota_{\lambda}(N(\varepsilon)) \times B \times B \times B(t') \subset \mathcal{M}^{*} \times B \times B(t')$$

with

 $((x^2, \tilde{t}^2), \tilde{t}^1, \tilde{t}') \in \iota_{\lambda}(N(\varepsilon)) \times B \times B \times B(t') \subset \mathcal{M}^* \times B \times B(t')$

if and only if $x^2 = s_{t'}(x^1)$, $t^1 = \tilde{t}^1$, $t^2 = \tilde{t}^2$, $t' = \tilde{t}'$. We can easily define the projection ϖ of $\mathcal{M}(2)$ to $B \times B \times B(t')$. Then it is clear that $(\mathcal{M}(2), B \times B \times B(t'), \varpi)$ becomes a complex analytic family with $\varpi^{-1}(0) = M(2)$. Studying the Kodaira-Spencer map, we get

Theorem 2. $(\mathcal{M}(2), B \times B \times B(t'), \varpi)$ is the complete, effectively parametrized complex analytic family of the small deformations of M(2).

No. 1]

A. YAMADA

For $n \ge 3$, we can construct the complete, effectively parametrized complex analytic family of the small deformations of M(n) inductively. Let

 $B(t'') = \{t'' = (t''_1, t''_2, \dots, t''_8) \in C^8 \mid |t''_i| < \delta \ (i=1, 2, \dots, 8)\}.$ We define a holomorphic open embedding s''_i of $N(\eta) \subset U_w \subset M$ into $N(\varepsilon)$ by

$$\begin{split} s_{\iota}''([\zeta_{0}:\zeta_{1}:\zeta_{2}:\zeta_{3}]) = & [\mu\zeta_{0} + \nu\zeta_{2}:(\mu t_{1}'' + \nu t_{2}'')\zeta_{0} + (\mu + \mu t_{3}'' + \nu t_{4}'')\zeta_{1} \\ & + (\nu t_{1}'' + \mu t_{2}'')\zeta_{2} + (\nu + \nu t_{3}'' + \mu t_{4}'')\zeta_{3}: \\ & - ((\nu + \mu t_{5}'' + \nu t_{6}'')\zeta_{0} + (\mu t_{7}'' + \nu t_{8}'')\zeta_{1} \\ & + (\mu + \nu t_{5}'' + \mu t_{6}'')\zeta_{2} + (\nu t_{7}'' + \mu t_{8}'')\zeta_{3}): \\ & - (\nu\zeta_{1} + \mu\zeta_{3})]. \end{split}$$

Assume that $\mathcal{M}(n)$ is defined with the parameter space $B^{(n)}$ and that $\mathcal{M}(n)$ contains $\overline{\iota_{\lambda}(U_{1/\epsilon})} \times B^{(n)}$ such that $\overline{\iota_{\lambda}(U_{1/\epsilon})} \times B^{(n)} \cap \mathcal{M}(n) = \overline{\iota_{\lambda}(U_{1/\epsilon})} \subset \mathcal{M}(n-1)^{\sharp} \cap \mathcal{M}^{\sharp}$. We denote $\mathcal{M}(n) - \overline{\iota_{\lambda}(U_{1/\epsilon})} \times B^{(n)}$ by $\mathcal{M}(n)^{\sharp}$. We construct $\mathcal{M}(n+1)$ of $\mathcal{M}(n)^{\sharp}$ and \mathcal{M}^{\sharp} by identifying

 $((x, t), t^{n+1}, t'') \in \mathcal{M}(n)^* \times B \times B(t'')$

with

$$((x^{n+1}, \tilde{t}^{n+1}), \tilde{t}, \tilde{t}^{\prime\prime}) \in \mathcal{M}^{*} \times B^{(n)} \times B(t^{\prime\prime})$$

if and only if

$$x = s_{t''}(x^{n+1}), \quad t = \tilde{t}, \quad t^{n+1} = \tilde{t}^{n+1}, \quad t'' = \tilde{t}''.$$

We can project $\mathcal{M}(n+1)$ onto $B^{(n)} \times B \times B(t'')$ and see that $(\mathcal{M}(n+1), B^{(n)} \times B \times B(t''), \varpi)$ is a complex analytic family with $\varpi^{-1}(0) = M(n+1)$. Calculating the Kodaira-Spencer map, we get

Theorem 3. $(\mathcal{M}(n), \underbrace{B \times \cdots \times B}_{n} \times B(t') \times \underbrace{B(t'') \times \cdots \times B(t'')}_{n}, \varpi)$ is

the complete, effectively parametrized complex analytic family of the small deformations of M(n).

References

- [1] Ma. Kato: On compact complex 3-folds with lines (preprint).
- [2] K. Kodaira and D. C. Spencer: A theorem of completeness for complex analytic fibre spaces. Acta Math., 100, 281-294 (1958).