103. On Some Euler Products. II

By Nobushige Kurokawa
Department of Mathematics, Tokyo Institute of Technology
(Communicated by Kunihiko Kodaira, m. J. A., Dec. 12, 1984)

§1. Meromorphy of Euler products. Let $E=(P, G, \alpha)$ be an Euler datum in the sense of Part I. We describe a sufficient condition making E and $\bar{E}=(P, G \times \boldsymbol{R}, \bar{\alpha})$ complete when $\mu(P)<d(P)(<\infty)$. We follow the notations of Part I (see [1]).

We say that E satisfies the condition L if E satisfies the following (I)-(III) :
(I) $L(s, E, \rho)$ is meromorphic on C for each $\rho \in \operatorname{Irr}^{u}(G)$.
(II) $L(s, E, \rho)$ is non-zero holomorphic in $\operatorname{Re}(s) \geqq d(P)$ for each $\rho \in \operatorname{Irr}^{u}(G)$, except for a simple pole at $s=d(P)$ when ρ is trivial.
(III) For each $\rho \in \operatorname{Irr}^{u}(G)$ and $T>0$, let $S(T, E, \rho)$ be the number of distinct zeros and poles of $L(s, E, \rho)$ in the region $\{s \in C ; 0<\operatorname{Re}(s)$ $\leqq d(P)$ and $-T<\operatorname{Im}(s)<T\}$. Then there exist a positive constant c and a real valued "admissible" function C on $\operatorname{Irr}^{u}(G)$ such that the following holds:
$S(T, E, \rho)<C(\rho)(T+1)^{c} \quad$ for all $\rho \in \operatorname{Irr}^{u}(G)$ and $T>0$.
The admissibility of C is defined as follows. We denote by $\operatorname{Rep}^{u}(G)$ the set of all equivalence classes of finite dimensional continuous unitary representations of G, which is considered to be a free abelian semigroup (with respect to the direct sum \oplus) generated by $\operatorname{Irr}^{u}(G)$, hence C is naturally considered as a function on $\operatorname{Rep}^{u}(G)$ by the additive extension. We put $C_{0}(\rho)=C(\rho) / \operatorname{deg}(\rho)$. We say that C is admissible if there exists a constant $a>0$ such that C_{0} satisfies the following (1)-(3):
(1) $C_{0}\left(\rho_{1} \otimes \rho_{2}\right) \leqq C_{0}\left(\rho_{1}\right)+C_{0}\left(\rho_{2}\right)+a$ for all ρ_{1} and $\rho_{2} \operatorname{in~}^{\operatorname{Rep}}{ }^{u}(G)$;
(2) $\quad C_{0}\left(\bigwedge^{j}(\rho)\right) \leqq C_{0}(\rho) j \cdot \operatorname{deg}(\rho)+a$ for all ρ in $\operatorname{Rep}^{u}(G)$ and $j \geqq 0$, where $\wedge^{j}(\rho)$ denotes the j-th exterior power of ρ;
(3) $\quad C_{0}\left(S^{m}(\rho)\right) \leqq C_{0}(\rho) m \cdot \operatorname{deg}(\rho)+a$ for all ρ in $\operatorname{Rep}^{u}(G)$ and $m \geqq 0$, where $S^{m}(\rho)$ denotes the m-th symmetric power of ρ.
(For example, deg is an admissible function with any $a \geqq 1$.)
Then we have the following
Theorem 1. Let $E=(P, G, \alpha)$ be an Euler datum with $\mu(P)<d(P)$. Assume that E satisfies the condition L. Then E and \bar{E} are complete.
§2. Note on the proof. Let G be a topological group. Let $H(T)$ be a polynomial of degree r belonging to $1+T \cdot R^{u}(G)[T]$. Then, there are continuous functions $\gamma_{m}: \operatorname{Conj}(G) \rightarrow C$ such that

$$
H_{c}(T)=\prod_{m=1}^{r}\left(1-\gamma_{m}(c) T\right) \quad \text { for all } c \in \operatorname{Conj}(G)
$$

where $\operatorname{Conj}(G)$ is equipped with the quotient topology induced from G. (Note that Conj (G) is the quotient space of G by the inner automorphism group.) We put $\gamma(c)=\max \left\{\left|\gamma_{m}(c)\right| ; m=1, \cdots, r\right\}$. Then γ is a real valued continuous function on Conj (G), and we define $\gamma(H)$ $=\sup \{\gamma(c) ; c \in \operatorname{Conj}(G)\}$. Then we have: $1 \leqq \gamma(H)<\infty$. (When $H(T)$ $=1$, we define $\gamma(H)=1$.) Moreover we see that $H(T)$ is unitary iff $\gamma(H)=1$. Then we have

Proposition 1. Let G and $H(T)$ be as above. Then:
(1) There is a unique $\kappa(n, \rho) \in Z$ for each integer $n \geqq 1$ and $\rho \in \operatorname{Irr}^{u}(G)$ such that $\kappa(n, \rho)=0$ except for a finite number of ρ for each fixed n and the following identity holds in the multiplicative group $1+T \cdot R^{u}(G)[[T]]:$

$$
H(T)=\prod_{n \geqq 1} \prod_{\rho} D_{\rho}(T)^{\kappa(n, \rho)}
$$

where $D_{\rho}(T)=\operatorname{det}(1-\rho T) \in 1+T \cdot R^{u}(G)[T]$.
(2) $|\kappa(n, \rho)| \leqq \operatorname{deg}(H)(d(n) / n) \gamma(H)^{n}$ for all n and ρ, where $d(n)$ denotes the number of the divisors of n, and $\operatorname{deg}(H)$ denotes the degree of $H(T)$.
(3) Put $f(n)=\sum_{\rho} \operatorname{deg}(\rho)$ where ρ runs over the finite set $I_{n}(H)$ $=\left\{\rho \in \operatorname{Irr}^{u}(G) ; \kappa(n, \rho) \neq 0\right\}$. Then, there are positive constants $c(1)$ and $c(2)$ satisfying the following: $f(n) \leqq c(1) n^{c(2)}$ for all $n \geqq 1$.
(4) If $c \in \operatorname{Conj}(G), T \in C$, and $|T|<\gamma(H)^{-1}$, then the right hand side of

$$
H_{c}(T)=\prod_{n \geq 1} \prod_{\rho} D_{\rho(c)}\left(T^{n}\right)^{\kappa(n, \rho)}
$$

converges absolutely as an infinite product.
We notice that (3) is a crucial point, and in the proof we show an explicit estimation concerning the set $I_{n}(H)$. This refinement is important in the proof of Theorem 1 (the part " $\tilde{E}: U \Rightarrow \overline{\tilde{E}}: D$ "; see below).

Now, let $E=(P, G, \alpha)$ be an Euler datum. Let $H(T) \in 1+T$. $R^{u}(G)[T]$. Then, using Proposition 1, we have the absolutely convergent expression

$$
\begin{equation*}
L(s, E, H)=\prod_{n \geq 1} \prod_{\rho} L(n s, E, \rho)^{\kappa(n, \rho)} \tag{*}
\end{equation*}
$$

when $\operatorname{Re}(s)>\max \left\{d(P),(\log \gamma(H)) /\left(\log N_{1}\right)\right\}$, where N_{1} denotes the first (or, minimal) norm of P defined by $N_{1}=\min \{N(p) ; p \in P\}$. Suppose that $H(T)$ is unitary (i.e., $\gamma(H)=1$). Then, by (2) of Proposition 1, there is an integer $N \geqq 1$ such that $\kappa(n, \rho)=0$ for all $n>N$ and all $\rho \in$ $\operatorname{Irr}^{u}(G)$. Hence, (*) is a finite product, so $L(s, E, H)$ is meromorphic on C if $L(s, E, \rho)$ are meromorphic on C for all $\rho \in \operatorname{Irr}^{u}(G)$. Therefore the large part of the proof of Theorem 1 treats the case of the non-
unitary $H(T)$; in this case (*) is actually an infinite product. To study this case, we introduce the compactification \tilde{E} of E. We denote by $K(G)$ the Bohr compactification of G; let $\varphi: G \rightarrow \prod_{\rho} U(\operatorname{deg}(\rho))$ be the continuous homomorphism defined by $\varphi(g)=(\rho(g))_{\rho}$ where ρ runs over $\operatorname{Rep}^{u}(G)$ and $U(n)$ denotes the unitary group of size n, then $K(G)$ is the topological closure of $\varphi(G)$. Then, this pair $(K(G), \varphi)$ has the following universal property : let (K, ψ) be any pair of compact group K and a continuous homomorphism $\psi: G \rightarrow K$, then, there exists a unique continuous homomorphism $f: K(G) \rightarrow K$ such that $\psi=f \circ \varphi$. In particular there exists a natural bijection between $\operatorname{Irr}^{u}(G)$ and $\operatorname{Irr}^{u}(K(G))$. Now we define the compactification by $\tilde{E}=(P, K(G), \tilde{\alpha})$ where $\tilde{\alpha}=\tilde{\varphi} \circ \alpha$ with the $\operatorname{map} \tilde{\varphi}: \operatorname{Conj}(G) \rightarrow \operatorname{Conj}(K(G))$ induced from φ. (We remark that this compactification is determined up to "isomorphism", and this ambiguity has no effect on our argument.)

We say that an Euler datum $E=(P, G, \alpha)$ is compact if G is compact. (For example, the compactification of an Euler datum is compact.) For each compact Euler datum $E=(P, G, \alpha)$ we introduce a condition U ("uniformity") which is weaker than L. For $t>0$ and a subset S of $\operatorname{Conj}(G)$ we put $\pi(t, E, S)=\#\{p \in P ; N(p) \leqq t$ and $\alpha(p) \in S\}$. We say that E satisfies the condition U if E satisfies (I) and (III) of L and the following :

$$
\begin{equation*}
\pi(t, E, S) \sim \frac{m(S) t^{d(P)}}{d(P) \log t} \quad \text { as } t \rightarrow \infty \tag{II-U}
\end{equation*}
$$

for each subset S of $\operatorname{Conj}(G)$ such that the boundary of S has measure zero for m, where m denotes the normalized measure on Conj (G) induced from the normalized Haar measure on G.

The proof of Theorem 1 goes as follows:
$E: L \Leftrightarrow \tilde{E}: L \Rightarrow \tilde{E}: U \Rightarrow \overline{\tilde{E}}: C \Rightarrow \bar{E}: C(\Rightarrow E: C)$, where C denotes "complete". The implication $\tilde{E}: U \Rightarrow \overline{\tilde{E}}: C$ is the most essential part, and we show that $\tilde{E}: U \Rightarrow \tilde{\tilde{E}}: D \Rightarrow \overline{\tilde{E}}: C$ by introducing a condition D ("density"), where the condition $\mu(P)<d(P)$ is used.
§3. Examples. We note two typical examples of complete Euler data. Some of other examples are automorphic (Langlands type) and schematic (Hasse-Weil type). (See also Examples 1-3 of Part I.) The first example is the Euler datum of Artin-Hecke type described in §3 of Part I. Let $E=E(\bar{F} / F)=\left(P\left(O_{F}\right), W(\bar{F} / F), \alpha\right)$ be the Euler datum treated there for a finite extension F of \boldsymbol{Q}. Then, Theorem 1 of Part I states that $E(\bar{F} / F)$ is complete. The proof of this fact is divided into the following three steps (a)-(c):
(a) $E(\bar{F} / F)$ is complete iff $E(K / F)=\left(P\left(O_{F}\right), W(K / F), \alpha^{K}\right)$ are complete for all finite Galois extensions K of F;
(b) $E(K / F)=\overline{E(K / F)_{1}}$ with $E(K / F)_{1}=\left(P\left(O_{F}\right), W(K / F)_{1}, \alpha_{1}^{K}\right)$ where $W(K / F)_{1}$ denotes the compact subgroup of $W(K / F)$ consisting of elements of volume 1 ;
(c) $E(K / F)_{1}$ satisfies the condition L, so Theorem 1 is applicable.

The fact that $E(K / F)_{1}$ satisfies (I) and (II) is due to Weil. When we check (III), we obtain a good function $C(\rho)$ having an explicit expression using the conductor and the "archimedean parameters" of ρ.

The second example is an Euler datum of Selberg type. Let R be a compact Riemann surface of general type. Let $P=P(R)$ be the set of closed geodesics on R and define $N(p)=\exp (l(p))$ for $p \in P$ where $l(p)$ denotes the length of p. Let $E(R)=\left(P(R), \pi_{1}(R), \alpha\right)$ be the Euler datum where $\alpha(p) \in \operatorname{Conj}\left(\pi_{1}(R)\right)$ is the conjugacy class of the fundamental group $\pi_{1}(R)$ determined by the loop p; we note that $0 \leqq \mu(P) \leqq$ $3 / 4<d(P)=1$. Then, $E(R)$ satisfies the condition L. In fact, (I) and (II) are contained in Selberg's results (except for a slight modification of Euler products), and in (III) we take $C(\rho)=C_{1} \operatorname{deg}(\rho)$ with a sufficiently large constant C_{1}. Hence we have:

Theorem 2. $E(R)$ and $\overline{E(R)}$ are complete.

Reference

[1] N. Kurokawa: On some Euler products. I. Proc. Japan Acad., 60A, 335-338 (1984).

