103. On Some Euler Products. II

By Nobushige KUROKAWA

Department of Mathematics, Tokyo Institute of Technology

(Communicated by Kunihiko KODAIRA, M. J. A., Dec. 12, 1984)

§1. Meromorphy of Euler products. Let $E = (P, G, \alpha)$ be an Euler datum in the sense of Part I. We describe a sufficient condition making E and $\overline{E} = (P, G \times \mathbb{R}, \overline{\alpha})$ complete when $\mu(P) < d(P)$ ($<\infty$). We follow the notations of Part I (see [1]).

We say that E satisfies the condition L if E satisfies the following (I)-(III):

(I) $L(s, E, \rho)$ is meromorphic on C for each $\rho \in Irr^{u}(G)$.

(II) $L(s, E, \rho)$ is non-zero holomorphic in $\operatorname{Re}(s) \ge d(P)$ for each $\rho \in \operatorname{Irr}^u(G)$, except for a simple pole at s = d(P) when ρ is trivial.

(III) For each $\rho \in \operatorname{Irr}^{u}(G)$ and T > 0, let $S(T, E, \rho)$ be the number of distinct zeros and poles of $L(s, E, \rho)$ in the region $\{s \in C; 0 < \operatorname{Re}(s) \leq d(P) \text{ and } -T < \operatorname{Im}(s) < T\}$. Then there exist a positive constant cand a real valued "admissible" function C on $\operatorname{Irr}^{u}(G)$ such that the following holds:

 $S(T, E, \rho) < C(\rho)(T+1)^c$ for all $\rho \in \operatorname{Irr}^u(G)$ and T > 0.

The admissibility of C is defined as follows. We denote by $\operatorname{Rep}^{u}(G)$ the set of all equivalence classes of finite dimensional continuous unitary representations of G, which is considered to be a free abelian semigroup (with respect to the direct sum \oplus) generated by $\operatorname{Irr}^{u}(G)$, hence C is naturally considered as a function on $\operatorname{Rep}^{u}(G)$ by the additive extension. We put $C_{0}(\rho) = C(\rho)/\deg(\rho)$. We say that C is admissible if there exists a constant a > 0 such that C_{0} satisfies the following (1)-(3):

(1) $C_0(\rho_1 \otimes \rho_2) \leq C_0(\rho_1) + C_0(\rho_2) + a$ for all ρ_1 and ρ_2 in $\operatorname{Rep}^u(G)$;

(2) $C_0(\wedge^j(\rho)) \leq C_0(\rho)j \cdot \deg(\rho) + a$ for all ρ in $\operatorname{Rep}^u(G)$ and $j \geq 0$, where $\wedge^j(\rho)$ denotes the *j*-th exterior power of ρ ;

(3) $C_0(S^m(\rho)) \leq C_0(\rho)m \cdot \deg(\rho) + a$ for all ρ in $\operatorname{Rep}^u(G)$ and $m \geq 0$, where $S^m(\rho)$ denotes the *m*-th symmetric power of ρ .

(For example, deg is an admissible function with any $a \ge 1$.)

Then we have the following

Theorem 1. Let $E = (P, G, \alpha)$ be an Euler datum with $\mu(P) < d(P)$. Assume that E satisfies the condition L. Then E and \overline{E} are complete.

§2. Note on the proof. Let G be a topological group. Let H(T) be a polynomial of degree r belonging to $1+T \cdot R^{u}(G)[T]$. Then, there are continuous functions γ_{m} : Conj $(G) \rightarrow C$ such that

N. KUROKAWA

 $H_c(T) = \prod_{m=1}^r (1 - \gamma_m(c)T) \quad \text{for all } c \in \text{Conj}(G),$

where Conj (G) is equipped with the quotient topology induced from G. (Note that Conj (G) is the quotient space of G by the inner automorphism group.) We put $\gamma(c) = \max\{|\gamma_m(c)|; m=1, \dots, r\}$. Then γ is a real valued continuous function on Conj (G), and we define $\gamma(H) = \sup\{\gamma(c); c \in \text{Conj}(G)\}$. Then we have: $1 \leq \gamma(H) < \infty$. (When H(T) = 1, we define $\gamma(H) = 1$.) Moreover we see that H(T) is unitary iff $\gamma(H) = 1$. Then we have

Proposition 1. Let G and H(T) be as above. Then:

(1) There is a unique $\kappa(n, \rho) \in \mathbb{Z}$ for each integer $n \ge 1$ and $\rho \in \operatorname{Irr}^{u}(G)$ such that $\kappa(n, \rho) = 0$ except for a finite number of ρ for each fixed n and the following identity holds in the multiplicative group $1 + T \cdot R^{u}(G)[[T]]$:

$$H(T) = \prod_{n \ge 1} \prod_{\rho} D_{\rho}(T)^{\epsilon(n,\rho)}$$

where $D_{\rho}(T) = \det(1-\rho T) \in 1+T \cdot R^u(G)[T]$.

(2) $|\kappa(n, \rho)| \leq \deg(H)(d(n)/n) \Upsilon(H)^n$ for all n and ρ , where d(n) denotes the number of the divisors of n, and $\deg(H)$ denotes the degree of H(T).

(3) Put $f(n) = \sum_{\rho} \deg(\rho)$ where ρ runs over the finite set $I_n(H) = \{\rho \in \operatorname{Irr}^u(G); \kappa(n, \rho) \neq 0\}$. Then, there are positive constants c(1) and c(2) satisfying the following: $f(n) \leq c(1)n^{c(2)}$ for all $n \geq 1$.

(4) If $c \in \text{Conj}(G)$, $T \in C$, and $|T| < \tilde{\gamma}(H)^{-1}$, then the right hand side of

$$H_{c}(T) = \prod_{n \geq 1} \prod_{\rho} D_{\rho(c)}(T^{n})^{\kappa(n,\rho)}$$

converges absolutely as an infinite product.

We notice that (3) is a crucial point, and in the proof we show an explicit estimation concerning the set $I_n(H)$. This refinement is important in the proof of Theorem 1 (the part " $\tilde{E}: U \Rightarrow \bar{\tilde{E}}: D$ "; see below).

Now, let $E = (P, G, \alpha)$ be an Euler datum. Let $H(T) \in 1+T \cdot R^{u}(G)[T]$. Then, using Proposition 1, we have the absolutely convergent expression

(*)
$$L(s, E, H) = \prod_{n \ge 1} \prod_{\rho} L(ns, E, \rho)^{\kappa(n, \rho)}$$

when Re $(s) > \max \{d(P), (\log r(H))/(\log N_1)\}$, where N_1 denotes the first (or, minimal) norm of P defined by $N_1 = \min \{N(p); p \in P\}$. Suppose that H(T) is unitary (i.e., r(H)=1). Then, by (2) of Proposition 1, there is an integer $N \ge 1$ such that $\kappa(n, \rho)=0$ for all n>N and all $\rho \in$ $\operatorname{Irr}^u(G)$. Hence, (*) is a finite product, so L(s, E, H) is meromorphic on C if $L(s, E, \rho)$ are meromorphic on C for all $\rho \in \operatorname{Irr}^u(G)$. Therefore the large part of the proof of Theorem 1 treats the case of the nonunitary H(T); in this case (*) is actually an infinite product. To study this case, we introduce the compactification \tilde{E} of E. We denote by K(G) the Bohr compactification of G; let $\varphi: G \to \prod_{\rho} U(\deg(\rho))$ be the continuous homomorphism defined by $\varphi(g) = (\rho(g))_{\rho}$ where ρ runs over $\operatorname{Rep}^u(G)$ and U(n) denotes the unitary group of size n, then K(G) is the topological closure of $\varphi(G)$. Then, this pair $(K(G), \varphi)$ has the following universal property: let (K, ψ) be any pair of compact group Kand a continuous homomorphism $\psi: G \to K$, then, there exists a unique continuous homomorphism $f: K(G) \to K$ such that $\psi = f \circ \varphi$. In particular there exists a natural bijection between $\operatorname{Irr}^u(G)$ and $\operatorname{Irr}^u(K(G))$. Now we define the compactification by $\tilde{E} = (P, K(G), \tilde{\alpha})$ where $\tilde{\alpha} = \tilde{\varphi} \circ \alpha$ with the map $\tilde{\varphi}: \operatorname{Conj}(G) \to \operatorname{Conj}(K(G))$ induced from φ . (We remark that this compactification is determined up to "isomorphism", and this ambiguity has no effect on our argument.)

We say that an Euler datum $E = (P, G, \alpha)$ is compact if G is compact. (For example, the compactification of an Euler datum is compact.) For each compact Euler datum $E = (P, G, \alpha)$ we introduce a condition U ("uniformity") which is weaker than L. For t > 0 and a subset S of Conj (G) we put $\pi(t, E, S) = \#\{p \in P; N(p) \leq t \text{ and } \alpha(p) \in S\}$. We say that E satisfies the condition U if E satisfies (I) and (III) of L and the following:

(II-U)
$$\pi(t, E, S) \sim \frac{m(S)t^{d(P)}}{d(P)\log t}$$
 as $t \to \infty$

for each subset S of Conj (G) such that the boundary of S has measure zero for m, where m denotes the normalized measure on Conj (G)induced from the normalized Haar measure on G.

The proof of Theorem 1 goes as follows:

 $E: L \Leftrightarrow \tilde{E}: L \Rightarrow \tilde{E}: U \Rightarrow \tilde{E}: C \Rightarrow \overline{E}: C (\Rightarrow E: C)$, where C denotes "complete". The implication $\tilde{E}: U \Rightarrow \tilde{E}: C$ is the most essential part, and we show that $\tilde{E}: U \Rightarrow \tilde{E}: D \Rightarrow \tilde{E}: C$ by introducing a condition D ("density"), where the condition $\mu(P) < d(P)$ is used.

§ 3. Examples. We note two typical examples of complete Euler data. Some of other examples are automorphic (Langlands type) and schematic (Hasse-Weil type). (See also Examples 1-3 of Part I.) The first example is the Euler datum of Artin-Hecke type described in § 3 of Part I. Let $E = E(\overline{F}/F) = (P(O_F), W(\overline{F}/F), \alpha)$ be the Euler datum treated there for a finite extension F of Q. Then, Theorem 1 of Part I states that $E(\overline{F}/F)$ is complete. The proof of this fact is divided into the following three steps (a)-(c):

(a) $E(\overline{F}/F)$ is complete iff $E(K/F) = (P(O_F), W(K/F), \alpha^{\kappa})$ are complete for all finite Galois extensions K of F;

(b) $E(K/F) = \overline{E(K/F)}_1$ with $E(K/F)_1 = (P(O_F), W(K/F)_1, \alpha_1^K)$ where $W(K/F)_1$ denotes the compact subgroup of W(K/F) consisting of elements of volume 1;

(c) $E(K/F)_1$ satisfies the condition L, so Theorem 1 is applicable.

The fact that $E(K/F)_1$ satisfies (I) and (II) is due to Weil. When we check (III), we obtain a good function $C(\rho)$ having an explicit expression using the conductor and the "archimedean parameters" of ρ .

The second example is an Euler datum of Selberg type. Let R be a compact Riemann surface of general type. Let P=P(R) be the set of closed geodesics on R and define $N(p) = \exp(l(p))$ for $p \in P$ where l(p) denotes the length of p. Let $E(R) = (P(R), \pi_1(R), \alpha)$ be the Euler datum where $\alpha(p) \in \text{Conj}(\pi_1(R))$ is the conjugacy class of the fundamental group $\pi_1(R)$ determined by the loop p; we note that $0 \leq \mu(P) \leq 3/4 < d(P) = 1$. Then, E(R) satisfies the condition L. In fact, (I) and (II) are contained in Selberg's results (except for a slight modification of Euler products), and in (III) we take $C(\rho) = C_1 \deg(\rho)$ with a sufficiently large constant C_1 . Hence we have:

Theorem 2. E(R) and $\overline{E(R)}$ are complete.

Reference

 [1] N. Kurokawa: On some Euler products. I. Proc. Japan Acad., 60A, 335-338 (1984).