93. On Certain Cubic Fields. VI

By Mutsuo WATABE

Department of Mathematics, Keio University

(Communicated by Shokichi IYANAGA, M. J. A., Nov. 12, 1984)

1. The notations E_F , E_F^+ , \mathcal{O}_F for an algebraic number field F, D_h for a polynomial $h(x) \in \mathbb{Z}[x]$ and $D_F(\alpha)$ for an algebraic number α in F have the same meanings as in [3].

In this note, we shall consider totally real cubic fields K with the properties:

(I) $\theta, \theta+1 \in E_{\kappa}$

(II) $\mathcal{O}_{K} = \mathbf{Z} + \mathbf{Z}\theta + \mathbf{Z}\theta^{2}$.

These fields will be called for convenience *primitive with two consecutive units*, in short *P-C* fields. We shall prove

Theorem. In *P*-*C* fields, we have $E_{\kappa} = \langle \pm 1 \rangle \times \langle \theta, \theta + 1 \rangle$.

2. Now we can distinguish four cases :

(1) $\theta, -1-\theta \in E_K^+$ (2) $\theta, 1+\theta \in E_K^+$

 $(3) \quad -\theta, \quad -1-\theta \in E_K^+ \qquad (4) \quad -\theta, \quad 1+\theta \in E_K^+$

In the case (1), we have $N_{K/Q}\theta=1$, $N_{K/Q}(1+\theta)=-1$ which implies Irr $(\theta; \mathbf{Q})=x^3-mx^2-(m+3)x-1$, $m \in \mathbb{Z}$, and in the case (2), we have $N_{K/Q}\theta=1$, $N_{K/Q}(1+\theta)=1$ which implies Irr $(\theta; \mathbf{Q})=x^3-nx^2-(n+1)x-1$, $n \in \mathbb{Z}$. The cases (3), (4) can be reduced to the case (2) by replacing θ respectively by $-1-\theta$ and $-(1+\theta)^{-1}$. Accordingly, we have to consider two kinds of fields (P-C1) and (P-C2), which are P-C fields with properties (1) respectively (2).

Now we have

Theorem 1. Cubic field $K = Q(\theta)$ with $Irr(\theta; Q) = f(x) \in Z[x]$ is (P-C1) field, if and only if $f(x) = x^3 - mx^2 - (m+3)x - 1$, $m \in Z$ and $\sqrt{D_t} = m^2 + 3m + 9$ is square free.

In fact, (1) is equivalent with Irr $(\theta; Q) = f(x) = x^3 - mx^2 - (m+3)x$ -1 and in this case K is Galois and so totally real, and (II) holds if and only if $\sqrt{D_t}$ is square free.

Theorem 2. Cubic field $K = Q(\theta)$ with $Irr(\theta; Q) = g(x) \in Z[x]$ is (P-C2) field, if and only if $g(x) = x^3 - nx^2 - (n+1)x - 1$, $n \in Z$, $D_g = (n^2 + n - 3)^2 - 32 > 0$ is square free.

In fact, (2) is equivalent with Irr $(\theta; Q) = x^3 - nx^2 - (n+1)x - 1$ and $D_q > 0$ means that K is totally real, and (II) means that D_q is square free.

3. *Proof of Theorem*. We shall prove this theorem in two cases: (P-C1) fields and (P-C2) fields.

M. WATABE

(i) Case (*P*-C1). In [3], we have proved $E_{\kappa} = \langle \pm 1 \rangle \times \langle \theta, \theta + 1 \rangle$ for (*P*-C1) fields with $m \geq -1$. The case m < -1 is reduced to this case for the following reason. Put $J(m, x) = x^3 - mx^2 - (m+3)x - 1$ and m+3=-l. Then we have $-(1/x^3)J(m, x) = J(l, 1/x)$ and if $m \geq -1$, then we have $l \leq -2$. Thus if Irr $(\theta; \mathbf{Q}) = J(m, x)$ with $m \geq -1$, then Irr $(1/\theta, \mathbf{Q}) = J(l, x)$ with m < -1.

(ii) Case (*P*-*C*2). In [4], we have proved $E_{\kappa} = \langle \pm 1 \rangle \times \langle \theta, \theta + 1 \rangle$ for (*P*-*C*2) fields with $n \leq -7$. So we have to supplement the case n = -5, -6. The case $n \geq 4$ is reduced to this case (see Remark 1 in [4]). Let *S* be the set of conjugate mappings of K/Q. Using the fact $|z^n - 1| \geq \max(|z|, 1)^{n-2} ||z|^2 - 1|$ for any $z \in C$ and $n \in N$ with $n \geq 2$ (cf. [1]), we have $|\delta(\delta+1)-1| = |\lambda^3-1| \geq \max(|\lambda|, 1)||\lambda|^2 - 1|$ in the notations of [4]. As K/Q is totally real, we have $|\lambda^{\sigma}|^2 = (|\lambda|^{\sigma})^2$ for any $\sigma \in S$, so that we have

$$(*) \qquad n^{2} + 5n + 5 = \prod_{\sigma \in S} |(\delta(\delta+1)-1)^{\sigma}| = \prod_{\sigma \in S} \max(|\lambda|^{\sigma}, 1) \prod_{\sigma \in S} ||\lambda^{\sigma}|^{2} - 1| \\ > (|n+2||n+3|)^{1/3} |N_{K/Q}(|\lambda|^{2} - 1)|,$$

as the roots of g(x) are situated as follows:

 $n+1<\delta_1< n+2, \quad -2<\delta_2<-1$ and $0<\delta_3<1$. A straightforward computation shows (see the proof of Theorem in [5] and consider the discriminants of $\operatorname{Irr}(|\lambda|; Q)$, $\operatorname{Irr}(|\lambda|-1; Q)$ and

Irr $(|\lambda|+1; \mathbf{Q})$, that we have $|N_{K/\mathbf{Q}}(|\lambda|^2-1)| \ge 5$. Thus (*) is impossible for n=-5, -6. Hence the case (k, l)=(1, 1) can not take place.

Remark. Our theorem follows also from the following result of E. Thomas [2] (instead of [3], [4]): $K = Q(\theta)$ with $\operatorname{Irr}(\theta; Q) = x^3 - mx^2 - (m+3)x-1$ with $m \ge -1$ or $\operatorname{Irr}(\theta; Q) = x^3 - (n-1)x^2 + nx - 1$ with $n \ge 7$ has the property that $\langle \pm 1 \rangle \times \langle \theta, \ \theta + 1 \rangle$ respectively $\langle \pm 1 \rangle \times \langle \theta, \ \theta - 1 \rangle$ coincide with the unit groups of orders $Z + Z\theta + Z\theta^2$. The proof is quite different from ours.

References

- F. H. Grossman: On the solution of diophantine equations in units. Acta Arith., 30, 137-143 (1976).
- [2] E. Thomas: Fundamental units for orders in certain cubic number fields.
 J. reine angew. Math., 310, 33-55 (1979).
- [3] M. Watabe: On certain cubic fields. I. Proc. Japan Acad., 59A, 66-69 (1983).
- [4] ----: On certain cubic fields. III. ibid., 59A, 260-262 (1983).
- [5] ----: On certain cubic fields. V. ibid., 60A, 302-305 (1984).