93. On Certain Cubic Fields. VI

By Mutsuo Watabe
Department of Mathematics, Keio University
(Communicated by Shokichi Iyanaga, m. J. A., Nov. 12, 1984)

1. The notations $E_{F}, E_{F}^{+}, \mathcal{O}_{F}$ for an algebraic number field F, D_{h} for a polynomial $h(x) \in Z[x]$ and $D_{F}(\alpha)$ for an algebraic number α in F have the same meanings as in [3].

In this note, we shall consider totally real cubic fields K with the properties:
(I) $\theta, \theta+1 \in E_{K}$
(II) $\mathcal{O}_{K}=Z+Z \theta+Z \theta^{2}$.

These fields will be called for convenience primitive with two consecutive units, in short $P-C$ fields. We shall prove

Theorem. In $P-C$ fields, we have $E_{K}=\langle \pm 1\rangle \times\langle\theta, \theta+1\rangle$.
2. Now we can distinguish four cases:
(1) $\theta,-1-\theta \in E_{K}^{+}$
(2) $\theta, 1+\theta \in E_{K}^{+}$
(3) $-\theta,-1-\theta \in E_{K}^{+}$
(4) $-\theta, 1+\theta \in E_{K}^{+}$

In the case (1), we have $N_{K / Q} \theta=1, N_{K / Q}(1+\theta)=-1$ which implies $\operatorname{Irr}(\theta ; \boldsymbol{Q})=x^{3}-m x^{2}-(m+3) x-1, m \in \boldsymbol{Z}$, and in the case (2), we have $N_{K / Q} \theta=1, N_{K / Q}(1+\theta)=1$ which implies $\operatorname{Irr}(\theta ; \boldsymbol{Q})=x^{3}-n x^{2}-(n+1) x-1$, $n \in Z$. The cases (3), (4) can be reduced to the case (2) by replacing θ respectively by $-1-\theta$ and $-(1+\theta)^{-1}$. Accordingly, we have to consider two kinds of fields ($P-C 1$) and ($P-C 2$), which are $P-C$ fields with properties (1) respectively (2).

Now we have
Theorem 1. Cubic field $K=\boldsymbol{Q}(\theta)$ with $\operatorname{Irr}(\theta ; \boldsymbol{Q})=f(x) \in \boldsymbol{Z}[x]$ is ($P-C 1$) field, if and only if $f(x)=x^{3}-m x^{2}-(m+3) x-1, m \in Z$ and $\sqrt{D_{f}}=m^{2}+3 m+9$ is square free.

In fact, (1) is equivalent with $\operatorname{Irr}(\theta ; \boldsymbol{Q})=f(x)=x^{3}-m x^{2}-(m+3) x$ -1 and in this case K is Galois and so totally real, and (II) holds if and only if $\sqrt{D_{f}}$ is square free.

Theorem 2. Cubic field $K=\boldsymbol{Q}(\theta)$ with $\operatorname{Irr}(\theta ; \boldsymbol{Q})=g(x) \in \boldsymbol{Z}[x]$ is (P-C2) field, if and only if $g(x)=x^{3}-n x^{2}-(n+1) x-1, n \in Z, D_{g}$ $=\left(n^{2}+n-3\right)^{2}-32>0$ is square free.

In fact, (2) is equivalent with $\operatorname{Irr}(\theta ; \boldsymbol{Q})=x^{3}-n x^{2}-(n+1) x-1$ and $D_{g}>0$ means that K is totally real, and (II) means that D_{g} is square free.
3. Proof of Theorem. We shall prove this theorem in two cases : ($P-C 1$) fields and ($P-C 2$) fields.
(i) Case ($P-C 1$). In [3], we have proved $E_{K}=\langle \pm 1\rangle \times\langle\theta, \theta+1\rangle$ for ($P-C 1$) fields with $m \geqq-1$. The case $m<-1$ is reduced to this case for the following reason. Put $J(m, x)=x^{3}-m x^{2}-(m+3) x-1$ and $m+3=-l$. Then we have $-\left(1 / x^{3}\right) J(m, x)=J(l, 1 / x)$ and if $m \geqq-1$, then we have $l \leqq-2$. Thus if $\operatorname{Irr}(\theta ; \boldsymbol{Q})=J(m, x)$ with $m \geqq-1$, then $\operatorname{Irr}(1 / \theta, \boldsymbol{Q})=J(l, x)$ with $m<-1$.
(ii) Case ($P-C 2$). In [4], we have proved $E_{K}=\langle \pm 1\rangle \times\langle\theta, \theta+1\rangle$ for ($P-C 2$) fields with $n \leqq-7$. So we have to supplement the case $n=-5,-6$. The case $n \geqq 4$ is reduced to this case (see Remark 1 in [4]). Let S be the set of conjugate mappings of K / Q. Using the fact $\left|z^{n}-1\right| \geqq\left.\max (|z|, 1)^{n-2}| | z\right|^{2}-1 \mid$ for any $z \in C$ and $n \in N$ with $n \geqq 2$ (cf. [1]), we have $|\delta(\delta+1)-1|=\left|\lambda^{3}-1\right| \geqq\left.\max (|\lambda|, 1)| | \lambda\right|^{2}-1 \mid$ in the notations of [4]. As K / Q is totally real, we have $\left|\lambda^{\sigma}\right|^{2}=\left(|\lambda|^{\circ}\right)^{2}$ for any $\sigma \in S$, so that we have
(*) $\quad n^{2}+5 n+5=\prod_{\sigma \in S}\left|(\delta(\delta+1)-1)^{\sigma}\right|=\left.\prod_{\sigma \in S} \max \left(|\lambda|^{\sigma}, 1\right) \prod_{\sigma \in S}| | \lambda^{\sigma}\right|^{2}-1 \mid$

$$
>(|n+2||n+3|)^{1 / 3}\left|N_{K / Q}\left(|\lambda|^{2}-1\right)\right|
$$

as the roots of $g(x)$ are situated as follows:

$$
n+1<\delta_{1}<n+2, \quad-2<\delta_{2}<-1 \quad \text { and } \quad 0<\delta_{3}<1
$$

A straightforward computation shows (see the proof of Theorem in [5] and consider the discriminants of $\operatorname{Irr}(|\lambda| ; \boldsymbol{Q}), \operatorname{Irr}(|\lambda|-1 ; \boldsymbol{Q})$ and $\operatorname{Irr}(|\lambda|+1 ; \boldsymbol{Q})$), that we have $\left|N_{K / Q}\left(|\lambda|^{2}-1\right)\right| \geqq 5$. Thus (*) is impossible for $n=-5,-6$. Hence the case $(k, l)=(1,1)$ can not take place.

Remark. Our theorem follows also from the following result of E. Thomas [2] (instead of [3], [4]): $K=\boldsymbol{Q}(\theta)$ with $\operatorname{Irr}(\theta ; \boldsymbol{Q})=x^{3}-m x^{2}$ $-(m+3) x-1$ with $m \geqq-1$ or $\operatorname{Irr}(\theta ; \boldsymbol{Q})=x^{3}-(n-1) x^{2}+n x-1$ with $n \geqq 7$ has the property that $\langle \pm 1\rangle \times\langle\theta, \theta+1\rangle$ respectively $\langle \pm 1\rangle$ $\times\langle\theta, \theta-1\rangle$ coincide with the unit groups of orders $\boldsymbol{Z}+\boldsymbol{Z} \theta+\boldsymbol{Z} \theta^{2}$. The proof is quite different from ours.

References

[1] F. H. Grossman: On the solution of diophantine equations in units. Acta Arith., 30, 137-143 (1976).
[2] E. Thomas: Fundamental units for orders in certain cubic number fields. J. reine angew. Math., 310, 33-55 (1979).
[3] M. Watabe: On certain cubic fields. I. Proc. Japan Acad., 59A, 66-69 (1983).
[4] -: On certain cubic fields. III. ibid., 59A, 260-262 (1983).
[5] -: On certain cubic fields. V. ibid., 60A, 302-305 (1984).

