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1. The notations E, E, (C) for an algebraic number field F, D.
for a polynomial h(x)e Z[x] and D(c) for an algebraic number a in.
F have the same meanings as in [3].

In this note, we shall consider totally real cubic fields K with the
properties"

(I) 0, +1 eEx
(II) Ox=Z+ZO+ZO.

These fields will be called for convenience primitive with two eonseeu-.
tire units, in short P-C fields. We shall prove

Theorem. In P-C fields, we ha,ve E= (+ 1) (0, 0+1).
2. Now we can distinguish four eases"

(1) 0, --1--0eE (2) 0, l+0eE
(3) --0, --1--0eE (4) --0, l+0eE

In the case (1), we have N/aO=I, Nm(l+O)=--I which implies
Irr (0 Q) x-mx-(m+3)x- 1, m e z, and in the case (2), we have

Nx/aO=I, N/(1+0)=1 which implies Irr (0; Q)=x-nx-(n+l)x-1,
n e z. The cases (3), (4) can be reduced to the case (2) by replacing 0

respectively by -1-0 and -(1+0)-. Accordingly, we have to con-
sider two kinds of fields (P-C1) and (P-C2), which are P-C fields with
properties (1) respectively (2).

Now we have
Theorem 1. Cubic field K=Q(O) with Irr (0; Q)=f(x) e z[x] is

(P-C1) field, if and only if f(x)=x-mx-(m+3)x-1, m eZ and

/D m +3m+9 is square free.
In fact, (1) is equivalent with Irr (0; Q)=f(x)=x-mx-(m+3)x

-1 and in this case K is Galois and so totally real, and (II) holds if
and only if /D is square free.

Theorem 2. Cubic field K=Q(O) with Irr (0; Q)=g(x) e z[x] is

(P-C2) field, if and only if g(x) x--nx:-(n + 1)x--1, n e Z, D
(n +n-- 3Y-- 32>0 is square free.

In fact, (2) is equivalent with Irr (0; Q)=x-nx-(n+l)x-1 and
Dq>0 means hat K is totally real, and (II) means that D is square
free.

3. Proof o/Theorem. We shall prove this theorem in two cases"

(P-C1) fields and (P-C2) fields.



332 M. WATABE [Vol. 60 (A),

(i) Case (P-C1). In [3], we have proved EK (+__ 1} (0, 0+ 1}
for (P-C1) fields with m>=-l. The case m--I is reduced to this
case for the following reason. Put J(m, x)=x3--mx2--(m-F3)x--1 and
m+3=--l. Then we have --(1/x3)J(m,x)=J(1, l/x) and if m--l,
then we have 1_<__-2. Thus if Irr(0; Q)-J(m, x) with m-l, then
Irr (1/0, Q)=J(1, x) with m 1.

(ii) Case (P-C2). In [4], we have proved
2or (P-C2) fields with n<:--7. So we have to supplement the case
n= --5, --6. The case n>=4 is reduced to this case (see Remark 1 in [4]).
Let S be the set of conjugate mappings of K/Q. Using the fact
lzn-ll_>_=max(Izl, 1)n-2[Iz[2-1[ for any z e C and n e N with n2 (cf.
[1]), we have [(+l)--ll=l’--llmax(I]l, 1)]]]]--11 in the notations
of [4]. As K/Q is totally real, we have I2l=(l]) for any a e S, so
that we have
( * ) n+5n+5= I-[ ((+l)--l)I [I max

oS oS

>(In-F211n-F3l)’/[Y:/(I,l- 1)1,
as the roots of g(x) are situated as follows"

n+lln+2, --23--1 and 031.
A straightforward computation shows (see the proof of Theorem in
[5] and consider the discriminants of Irr (121; Q), Irr (12[-1; Q) and
Irr (12[+1; Q)), that we have IN/o(ll-l)]>=5. Thus (,) is impossible
for n=--5, --6. Hence the case (k,/)=(1, 1) can not take place.

Remark. Ogr theorem follows also from the following result cf
E. Thomas [2] (instead of [3], [4])" K= Q(O) with Irr (0 Q)= x-mx
--(m+3)x--1 with m___-I or Irr(8; Q)=x-(n-1)x+nx-1 with

n>=7 has the property that (+_1} (0, 0+1} respectively (___1}
(0, -1} coincide with the unit groups o orders Z+ZO+ZO. The

proof is quite different from ours.
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