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Let o_>_0 and let m, n be nonnegative integers. Disk polynomials
R() are defined in terms of Jacobi polynomials by

[R(’-)(2r--l)e(-)r if m>_n,
R (z)=’ [R,-)(2r-l)e*(-)r if m<n,

where z=re and R’)(x) is the Jacobi polynomial of degree n and of
.order (a, fl) normalized so that R"’)(1)=1. If a=q--2, q=2, 3, 4, ...,
then disk polynomials are the spherical functions on the sphere
S=-1 considered as the homogeneous space U(q)/U(q-1). Let D and
D be the open unit disk a.nd the closed unit disk in the complex plane.,
respectively. Denote by A<") the space of absolutely convergent disk
polynomial series on D, that is, the space of functions f on D such that

y(z) ,=0 a,nR"(z) with a.,{ <,
and introduce a norm to A(") by ]lf]=ia.,I.

The purpose of this note is to study the structure of the space
A<). Details will be published elsewhere.

1. Firstly we mention some properties of R"
(i) R"(z) is a polynomial of degree m+n in x and y where

z=x+iy.

(ii) R("),. (z)R?() dm,(z) h()-.,,.
where dm,(z)=(a!) (1--x--y) dxdy, h"= (m+n+a+l)F(m+a

+I)F(n+a+I){(a+I)F(a+I)=F(m+I)F(n+I)}-, =x--iy and is
Kronecker’s ,.

(iii) [R"(z)ll on D ([7; (5.1)]).
(iv) R(z)R()r=.q ,) <)

,t, c, (m, n" k, 1)h"qR,q(z)
with c,(m, n k, 1)O ([8; Corollary 5.2]).

Disk polynomials are studied by several authors and we cite here
only T. H. Koornwinder [7].

The space A( consists of continuous functions on D since if
]a,l < then the series a,nR(z) converges uniformly on D by
(iii). Let be the Banach space of absolutely convergent double
sequences b={b,},:0 with norm ilbil=]b,i. Then A is a
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Banach space isometric to l’ by the map f--{f(m, n)hn},n:0 of A

onto l’, where f(m, n)= f(z)R’>,()dm(z). We now claim A<> is an
()algebra. Assume that f(z)-- am nR,n(z) and g(z)-- b,tR(,(z) are

in A(’>. Then we have
()f(z)g(z)= E a,nb:,tR,,n(z)Rk,t(z)

(a) (a)( , am, b,Cp, q(m, n, k l)}h,qRp, q(z)
pq m,n;kl

and
llfgll= { , la,,llb,t]l Cp, q(m, n, p, q)h(,l}

pq mn;kl

since ,c,(m, n; k,/)h:=l by (iv). Thus it follows that the
space A is a semi-simple, commutative Banach algebra with point-
wise multiplication of functions.

Let be the maximal ideal space of A(). For every z in D, the
map ff(z) defines a multiplica.tive linear unctional on A(). Thus
we have a map o D into such tha.t f((z))=f(z) or z in D and f
in A(), where f is the Geland transform of f. It is clear that is
one to one from D into . Moreover we can show that is a map
D onto using an asymptotic ormula or Jacobi polynomials R
with error terms estimated with respect to the pa.rameter ft. Thus
we have

Theorem 1. The maximal ideal space of the algebra A( is
homeomorphic to the closed unit disk D by She map and the Gelfand
transform f of f in A( is given by f((z))=f(z) for z in D.

By the Wiener-Lvy theorem we have
Corollary. Suppose that f(z) ,a,Ry: (z), ,la,[ <

and F is a holomorphic function on an open set containing the range

of f Then F(f(z))=, bin, Rn(Z) with E, b, .
Banach algebras related to some orthogona.1 polynomials are

studied by several authors. For Jacobi polynomials, see G. Gasper
[3] and S. Igari and Y. Uno [4]. A Banach algebra with the dual
structure o A() is studied by H. Annabi and K. Trimche [1] and Y.
Kanjin [6].

2. A closed set E in D will be called a. set of interpolation with
respect to A(), if every continuous unction on E is the restriction of
a unction in A() to E. S.A. Vinogradov [9] and [4] suggest the
following observations.

A finite subset o D is evidently a set of interpolation with respect
to A(). Let T be the circle group R/2zZ and A(T) be the space of
absolutely convergent Fourier series f(t)=:_anet, ]a[.
A closed set E in T is called a Helson set, if every continuous unction
on E is the restriction o a unction in A(T) to E (cf. [5; Ch. IV]).
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The image of a Helson set by the map te will be called a Helson
set in the boundary. For f(t)=:_aet in A(T), put

()f(z)--- -,__oan(n,(Z) +=1a-nIo,(Z).
Then f(z) belongs to A(). Thus a Helson set in the boundary is a set
of interpolation with respect to A. Also, the union of a finite set
in D and a Helson set in the boundary is a set of interpolation with
respect to A. The converse holds"

Theorem 2. Suppose that cel. Then every set of interpolation
with respect to A() is the union of a finite set in D and a Helson set
in the boundary.

Remark. Whether Theorem 2 does hold or not for l>_a>_0 is
open. But we can show the following" Let a>0 and E be a set of
interpolation with respect to A(). Then points of E do not accumulate
in D.

3. Let E be a closeel subset of D. Denote by I(E) the closed
ideal in A(") consisting of all f in A(") such that f-0 on E and by J(E)
the set of all f in A(") such that f=0 on a neighborhood of E. If J(E)
is dense in I(E)then E is called a set of spectral synthesis for A().

Theorem 3. If >=1 and Zo is in D then {z0} is not a set of spectral
synthesis for A().

We refer to [5 Ch. V] for the algebra A(T) and F. Cazzaniga and
C. Mea,ney [2] for the algebra of absolutely convergent Jacobi poly-
nomial series. A proof of the theorems will be published elsewhere.
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