91. On the Algebra of Absolutely Convergent Disk Polynomial Series

By Yûichi Kanjin
Department of Mathematics, College of Liberal Arts, Kanazawa University

(Communicated by Kôsaku Yosida, m. J. A., Nov. 12, 1984)

Let $\alpha \geqq 0$ and let m, n be nonnegative integers. Disk polynomials $R_{m, n}^{(\alpha)}$ are defined in terms of Jacobi polynomials by

$$
R_{m, n}^{(\alpha)}(z)= \begin{cases}R_{n}^{(\alpha, m-n)}\left(2 r^{2}-1\right) e^{i(m-n) \theta} r^{m-n} & \text { if } m \geqq n, \\ R_{m}^{(\alpha, n-m)}\left(2 r^{2}-1\right) e^{i(m-n) \theta} r^{n-m} & \text { if } m<n,\end{cases}
$$

where $z=r e^{i \theta}$ and $R_{n}^{(\alpha, \beta)}(x)$ is the Jacobi polynomial of degree n and of $\operatorname{order}(\alpha, \beta)$ normalized so that $R_{n}^{(\alpha, \beta)}(1)=1$. If $\alpha=q-2, q=2,3,4, \cdots$, then disk polynomials are the spherical functions on the sphere $S^{2 q-1}$ considered as the homogeneous space $U(q) / U(q-1)$. Let D and \bar{D} be the open unit disk and the closed unit disk in the complex plane, respectively. Denote by $A^{(\alpha)}$ the space of absolutely convergent disk polynomial series on \bar{D}, that is, the space of functions f on \bar{D} such that

$$
f(z)=\sum_{m, n=0}^{\infty} a_{m, n} R_{m, n}^{(\alpha)}(z) \quad \text { with } \quad \sum\left|a_{m, n}\right|<\infty,
$$

and introduce a norm to $A^{(\alpha)}$ by $\|f\|=\sum\left|a_{m, n}\right|$.
The purpose of this note is to study the structure of the space $A^{(\alpha)}$. Details will be published elsewhere.

1. Firstly we mention some properties of $R_{m, n}^{(\alpha)}$:
(i) $R_{m, n}^{(\alpha)}(z)$ is a polynomial of degree $m+n$ in x and y where $z=x+i y$.
(ii) $\int_{\bar{D}} R_{m, n}^{(\alpha)}(z) R_{k, l}^{(\alpha)}(\bar{z}) d m_{\alpha}(z)=h_{m, n}^{(\alpha)-1} \delta_{m k} \delta_{n l}$, where $d m_{\alpha}(z)=\left(\frac{\alpha+1}{\pi}\right)\left(1-x^{2}-y^{2}\right)^{\alpha} d x d y, h_{m, n}^{(\alpha)}=(m+n+\alpha+1) \Gamma(m+\alpha$ $+1) \Gamma(n+\alpha+1)\left\{(\alpha+1) \Gamma(\alpha+1)^{2} \Gamma(m+1) \Gamma(n+1)\right\}^{-1}, \bar{z}=x-i y$ and $\delta_{m k}$ is Kronecker's δ.
(iii) $\left|R_{m, n}^{(\alpha)}(z)\right| \leqq 1$ on $\bar{D}([7 ;(5.1)])$.
(iv) $\quad R_{m, n}^{(\alpha)}(z) R_{k, l}^{(\alpha)}(z)=\sum_{p, q} c_{p, q}(m, n ; k, l) h_{p, q}^{(\alpha)} R_{p, q}^{(\alpha)}(z)$ with $c_{p, q}(m, n ; k, l) \geqq 0$ ([8; Corollary 5.2]).

Disk polynomials are studied by several authors and we cite here only T. H. Koornwinder [7].

The space $A^{(\alpha)}$ consists of continuous functions on \bar{D} since if $\sum\left|a_{m, n}\right|<\infty$ then the series $\sum a_{m, n} R_{m, n}^{(\alpha)}(z)$ converges uniformly on \bar{D} by (iii). Let l^{1} be the Banach space of absolutely convergent double sequences $b=\left\{b_{m, n}\right\}_{m, n=0}^{\infty}$ with norm $\|b\|=\sum\left|b_{m, n}\right|$. Then $A^{(\alpha)}$ is a

Banach space isometric to l^{1} by the map $f \rightarrow\left\{\hat{f}(m, n) h_{m, n}^{(\alpha)}\right\}_{m, n=0}^{\infty}$ of $A^{(\alpha)}$ onto l^{1}, where $\hat{f}(m, n)=\int_{\bar{D}} f(z) R_{m, n}^{(\alpha)}(\bar{z}) d m_{\alpha}(z)$. We now claim $A^{(\alpha)}$ is an algebra. Assume that $f(z)=\sum a_{m, n} R_{m, n}^{(\alpha)}(z)$ and $g(z)=\sum b_{k, l} R_{k, l}^{(\alpha)}(z)$ are in $A^{(\alpha)}$. Then we have

$$
\begin{aligned}
f(z) g(z) & =\sum_{m, n ; k, l} a_{m, n} b_{k, l} R_{m, n}^{(\alpha)}(z) R_{k, l}^{(\alpha)}(z) \\
& =\sum_{p, q}\left\{\sum_{m, n ; k, l} a_{m, n} b_{k, l} c_{p, q}(m, n ; k, l)\right\} h_{p, q}^{(\alpha)} R_{p, q}^{(\alpha)}(z)
\end{aligned}
$$

and

$$
\begin{aligned}
\|f g\| & \leqq \sum_{p, q}\left\{\sum_{m, n ; k, l} \mid a_{m, n}\left\|b_{k, l}\right\| c_{p, q}(m, n, ; p, q) h_{p, q}^{(\alpha)}\right\} \\
& \leqq\|f\|\|g\|
\end{aligned}
$$

since $\sum_{p, q}\left|c_{p, q}(m, n ; k, l) h_{p, q}^{(\alpha)}\right|=1$ by (iv). Thus it follows that the space $A^{(\alpha)}$ is a semi-simple, commutative Banach algebra with pointwise multiplication of functions.

Let \mathscr{M} be the maximal ideal space of $A^{(\alpha)}$. For every z in \bar{D}, the map $f \rightarrow f(z)$ defines a multiplicative linear functional on $A^{(\alpha)}$. Thus we have a map ι of \bar{D} into \mathscr{M} such that $\tilde{f}(\iota(z))=f(z)$ for z in \bar{D} and f in $A^{(\alpha)}$, where \tilde{f} is the Gelfand transform of f. It is clear that ι is one to one from \bar{D} into \mathscr{M}. Moreover we can show that ι is a map of \bar{D} onto \mathscr{M} using an asymptotic formula for Jacobi polynomials $R_{n}^{(\alpha, \beta)}$ with error terms estimated with respect to the parameter β. Thus we have

Theorem 1. The maximal ideal space \mathscr{M} of the algebra $A^{(\alpha)}$ is homeomorphic to the closed unit disk \bar{D} by the map ८ and the Gelfand transform \tilde{f} of f in $A^{(\alpha)}$ is given by $\tilde{f}(\iota(z))=f(z)$ for z in \bar{D}.

By the Wiener-Lévy theorem we have
Corollary. Suppose that $f(z)=\sum_{m, n} a_{m, n} R_{m, n}^{(\alpha)}(z), \sum_{m, n}\left|a_{m, n}\right|<\infty$ and F is a holomorphic function on an open set containing the range of f. Then $F(f(z))=\sum_{m, n} b_{m, n} R_{m, n}^{(\alpha)}(z)$ with $\sum_{m, n}\left|b_{m, n}\right|<\infty$.

Banach algebras related to some orthogonal polynomials are studied by several authors. For Jacobi polynomials, see G. Gasper [3] and S. Igari and Y. Uno [4]. A Banach algebra with the dual structure of $A^{(\alpha)}$ is studied by H. Annabi and K. Trimèche [1] and Y. Kanjin [6].
2. A closed set E in \bar{D} will be called a set of interpolation with respect to $A^{(\alpha)}$, if every continuous function on E is the restriction of a function in $A^{(\alpha)}$ to E. S. A. Vinogradov [9] and [4] suggest the following observations.

A finite subset of \bar{D} is evidently a set of interpolation with respect to $A^{(\alpha)}$. Let T be the circle group $R / 2 \pi Z$ and $A(T)$ be the space of absolutely convergent Fourier series $f(t)=\sum_{n=-\infty}^{\infty} a_{n} e^{i n t}, \sum_{n}\left|a_{n}\right|<\infty$. A closed set E in T is called a Helson set, if every continuous function on E is the restriction of a function in $A(T)$ to E (cf. [5; Ch. IV]).

The image of a Helson set by the map $t \rightarrow e^{i t}$ will be called a Helson set in the boundary. For $f(t)=\sum_{n=-\infty}^{\infty} a_{n} e^{i n t}$ in $A(T)$, put

$$
f(z)=\sum_{n=0}^{\infty} a_{n} R_{n, 0}^{(\alpha)}(z)+\sum_{n=1}^{\infty} a_{-n} R_{0, n}^{(\alpha)}(z) .
$$

Then $f(z)$ belongs to $A^{(\alpha)}$. Thus a Helson set in the boundary is a set of interpolation with respect to $A^{(\alpha)}$. Also, the union of a finite set in \bar{D} and a Helson set in the boundary is a set of interpolation with respect to $A^{(\alpha)}$. The converse holds:

Theorem 2. Suppose that $\alpha>1$. Then every set of interpolation with respect to $A^{(\alpha)}$ is the union of a finite set in D and a Helson set in the boundary.

Remark. Whether Theorem 2 does hold or not for $1 \geqq \alpha \geqq 0$ is open. But we can show the following: Let $\alpha>0$ and E be a set of interpolation with respect to $A^{(\alpha)}$. Then points of E do not accumulate in D.
3. Let E be a closed subset of \bar{D}. Denote by $I(E)$ the closed ideal in $A^{(\alpha)}$ consisting of all f in $A^{(\alpha)}$ such that $f=0$ on E and by $J(E)$ the set of all f in $A^{(\alpha)}$ such that $f=0$ on a neighborhood of E. If $J(E)$ is dense in $I(E)$ then E is called a set of spectral synthesis for $A^{(\alpha)}$.

Theorem 3. If $\alpha \geqq 1$ and z_{0} is in D then $\left\{z_{0}\right\}$ is not a set of spectral synthesis for $A^{(\alpha)}$.

We refer to [5; Ch. V] for the algebra $A(T)$ and F. Cazzaniga and C. Meaney [2] for the algebra of absolutely convergent Jacobi polynomial series. A proof of the theorems will be published elsewhere.

References

[1] H. Annabi et K. Trimèche: Convolution généralisée sur le disque unité. C. R. Acad. Sci. Paris, 278, 21-24 (1974).
[2] F. Cazzaniga and C. Meaney: A local property of absolutely convergent Jacobi polynomial series. Tôhoku Math. J., 34, 389-406 (1982).
[3] G. Gasper: Linearization of the product of Jacobi polynomials, I and II. Canadian J. Math., 22, 171-175, 582-593 (1970).
[4] S. Igari and Y. Uno: Banach algebra related to the Jacobi polynomials. Tôhoku Math. J., 21, 668-673 (1969).
[5] J.-P. Kahane: Séries de Fourier Absolument Convergentes. Ergebnisse der Math., vol. 50, Springer-Verlag, Berlin, Heidelberg, New York (1970).
[6] Y. Kanjin: A convolution measure algebra on the unit disc. Tôhoku Math. J., 28, 105-115 (1976).
[7] T. H. Koornwinder: Two-variable analogues of the classical orthogonal polynomials. Theory and Application of Special Functions. Math. Res. Center, Univ. Wisconsin, Academic Press, Publ. no. 35, pp. 435-495 (1975).
[8] -: Positivity proofs for linearization and connection coefficients of orthogonal polynomials satisfying an addition formula. J. London Math. Soc. (2), 18, 101-114 (1978).
[9] S. A. Vinogradov: Ob interpolacii i nuljah stepennyh rjadov s posledovatelnostju koefficientov iz l^{r}. Dokl. Akad. Nauk SSSR, 160, 263-266 (1965).

